Sarcoglycans are enriched at the neuromuscular junction in a nerve-dependent manner.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY Cell Death & Disease Pub Date : 2025-01-22 DOI:10.1038/s41419-025-07353-1
Michela Gloriani, Bianca Cheli, Chiara D'Ercole, Veronica Ruggieri, Marianna Cosentino, Mireia Serrat Pineda, Biliana Lozanoska-Ochser, Francesca Grassi, Marina Bouché, Luca Madaro, Carles Sánchez Riera
{"title":"Sarcoglycans are enriched at the neuromuscular junction in a nerve-dependent manner.","authors":"Michela Gloriani, Bianca Cheli, Chiara D'Ercole, Veronica Ruggieri, Marianna Cosentino, Mireia Serrat Pineda, Biliana Lozanoska-Ochser, Francesca Grassi, Marina Bouché, Luca Madaro, Carles Sánchez Riera","doi":"10.1038/s41419-025-07353-1","DOIUrl":null,"url":null,"abstract":"<p><p>Sarcoglycanopathies are heterogeneous proximo-distal diseases presenting severe muscle alterations. Although there are 6 different sarcoglycan isoforms, sarcoglycanopathies are caused exclusively by mutations in genes coding for one of the four sarcoglycan transmembrane proteins (alpha, beta, gamma and delta) forming the sarcoglycan complex (SGC) in skeletal and cardiac muscle. Little is known about the different roles of the SGC beyond the dystrophin glycoprotein complex (DGC) structural role. Here, we show that SGC proteins are enriched at the post-synaptic membrane of neuromuscular junctions (NMJs). Using a mouse model lacking the beta-sarcoglycan subunit, we describe for the first time that the loss of the SGC in the NMJ area results in alterations of pre- and postsynaptic membrane, as well as a significant reduction of membrane potential. Moreover, using different denervated wild-type mouse models, we demonstrate that nerve presence precedes the sarcoglycan enrichment at NMJ, suggesting a nerve-dependent sarcoglycan expression. Altogether, our findings suggest that pathological decline should no longer be understood only in terms of sarcolemma damage but also in terms of sarcoglycans' participation in the NMJ. Henceforth, our work paves the way for the identification of new mechanisms involving sarcoglycans and new approaches for the treatment of sarcoglycanopathies.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"37"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07353-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sarcoglycanopathies are heterogeneous proximo-distal diseases presenting severe muscle alterations. Although there are 6 different sarcoglycan isoforms, sarcoglycanopathies are caused exclusively by mutations in genes coding for one of the four sarcoglycan transmembrane proteins (alpha, beta, gamma and delta) forming the sarcoglycan complex (SGC) in skeletal and cardiac muscle. Little is known about the different roles of the SGC beyond the dystrophin glycoprotein complex (DGC) structural role. Here, we show that SGC proteins are enriched at the post-synaptic membrane of neuromuscular junctions (NMJs). Using a mouse model lacking the beta-sarcoglycan subunit, we describe for the first time that the loss of the SGC in the NMJ area results in alterations of pre- and postsynaptic membrane, as well as a significant reduction of membrane potential. Moreover, using different denervated wild-type mouse models, we demonstrate that nerve presence precedes the sarcoglycan enrichment at NMJ, suggesting a nerve-dependent sarcoglycan expression. Altogether, our findings suggest that pathological decline should no longer be understood only in terms of sarcolemma damage but also in terms of sarcoglycans' participation in the NMJ. Henceforth, our work paves the way for the identification of new mechanisms involving sarcoglycans and new approaches for the treatment of sarcoglycanopathies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
期刊最新文献
RNAi-based ALOX15B silencing augments keratinocyte inflammation in vitro via EGFR/STAT1/JAK1 signalling. Sarcoglycans are enriched at the neuromuscular junction in a nerve-dependent manner. Tp53 determines the spatial dynamics of M1/M2 tumor-associated macrophages and M1-driven tumoricidal effects. PCDH17 induces colorectal cancer metastasis by destroying the vascular endothelial barrier. Role of the androgen receptor in melanoma aggressiveness.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1