Modeling Innate Immunity Causing Chronic Inflammation and Tissue Damage.

IF 2 4区 数学 Q2 BIOLOGY Bulletin of Mathematical Biology Pub Date : 2025-01-23 DOI:10.1007/s11538-024-01410-0
Kosei Matsuo, Yoh Iwasa
{"title":"Modeling Innate Immunity Causing Chronic Inflammation and Tissue Damage.","authors":"Kosei Matsuo, Yoh Iwasa","doi":"10.1007/s11538-024-01410-0","DOIUrl":null,"url":null,"abstract":"<p><p>Mathematical models of immune responses have traditionally focused on adaptive immunity and pathogen-immune dynamics. However, recent advances in immunology have highlighted the critical role of innate immunity. In response to physical damage or pathogen attacks, innate immune cells circulating throughout the body rapidly migrate from blood vessels and accumulate at the site of injury, triggering inflammation. These cells engulf, break down, and eliminate pathogens. This innate immune response occurs much faster than adaptive immune responses, which require time for cell activation and proliferation. While inflammation helps eliminate pathogens, it can sometimes lead to chronic inflammation by triggering excessive immune responses, ultimately causing tissue damage. In this study, we examine a simple dynamical model of innate immunity. The analysis indicates that when an infection occurs, it triggers inflammation, which activates the innate immune system and initiates the activation cycle. Consequently, pathogens may be eradicated, leaving behind persistent chronic inflammation. Alternatively, the pathogens may not be eradicated, with their abundance either stabilizing at a positive level or oscillating indefinitely. The dynamics exhibit both transcritical and Hopf bifurcations. When innate immunity is activated in the absence of inflammation, pathogens are eradicated more easily, and the likelihood of oscillations in inflammation, immune responses, and pathogen abundance is reduced.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 2","pages":"34"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760608/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01410-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mathematical models of immune responses have traditionally focused on adaptive immunity and pathogen-immune dynamics. However, recent advances in immunology have highlighted the critical role of innate immunity. In response to physical damage or pathogen attacks, innate immune cells circulating throughout the body rapidly migrate from blood vessels and accumulate at the site of injury, triggering inflammation. These cells engulf, break down, and eliminate pathogens. This innate immune response occurs much faster than adaptive immune responses, which require time for cell activation and proliferation. While inflammation helps eliminate pathogens, it can sometimes lead to chronic inflammation by triggering excessive immune responses, ultimately causing tissue damage. In this study, we examine a simple dynamical model of innate immunity. The analysis indicates that when an infection occurs, it triggers inflammation, which activates the innate immune system and initiates the activation cycle. Consequently, pathogens may be eradicated, leaving behind persistent chronic inflammation. Alternatively, the pathogens may not be eradicated, with their abundance either stabilizing at a positive level or oscillating indefinitely. The dynamics exhibit both transcritical and Hopf bifurcations. When innate immunity is activated in the absence of inflammation, pathogens are eradicated more easily, and the likelihood of oscillations in inflammation, immune responses, and pathogen abundance is reduced.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
8.60%
发文量
123
审稿时长
7.5 months
期刊介绍: The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including: Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations Research in mathematical biology education Reviews Commentaries Perspectives, and contributions that discuss issues important to the profession All contributions are peer-reviewed.
期刊最新文献
Epidemiological Dynamics in Populations Structured by Neighbourhoods and Households. An Asymptotic Analysis of Spike Self-Replication and Spike Nucleation of Reaction-Diffusion Patterns on Growing 1-D Domains. EAD Mechanisms in Hypertrophic Mouse Ventricular Myocytes: Insights from a Compartmentalized Mathematical Model. modelSSE: An R Package for Characterizing Infectious Disease Superspreading from Contact Tracing Data. Influence of Contact Lens Parameters on Tear Film Dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1