Annalaura Montella, Matilde Tirelli, Vito Alessandro Lasorsa, Vincenzo Aievola, Vincenza Cerbone, Rosa Manganiello, Achille Iolascon, Mario Capasso
{"title":"Regulatory non-coding somatic mutations as drivers of neuroblastoma.","authors":"Annalaura Montella, Matilde Tirelli, Vito Alessandro Lasorsa, Vincenzo Aievola, Vincenza Cerbone, Rosa Manganiello, Achille Iolascon, Mario Capasso","doi":"10.1038/s41416-025-02939-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Emerging evidence suggests that non-coding somatic single nucleotide variants (SNVs) in cis-regulatory elements (CREs) contribute to cancer by disrupting gene expression networks. However, the role of non-coding SNVs in cancer, particularly neuroblastoma, remains largely unclear.</p><p><strong>Methods: </strong>SNVs effect on CREs activity was evaluated by luciferase assays. Motif analysis and ChIP-qPCR experiments were employed to reveal the transcription factors (TFs) involved in these processes. We exploited CRISPR-Cas9 experiments to elucidate the role of these SNVs on the CREs target genes expression. Cell proliferation and invasion assays were performed to assess their role in neuroblastoma tumorigenesis.</p><p><strong>Results: </strong>Our findings demonstrate that non-coding SNVs modify the transcriptional activity of two CREs altering the binding of STAT3 and SIN3A. Therefore, these SNVs reduce the expression of CTTNBP2 and MCF2L. We demonstrate that these two genes act as tumor suppressor in neuroblastoma. These pathogenetic SNVs may serve as oncogenic drivers by impairing the transcriptional programs essential for neuronal development and differentiation in which both the investigated TFs and target genes are involved.</p><p><strong>Conclusion: </strong>Overall, the understanding of the functional role of non-coding variants elucidates their impact on tumorigenesis and can uncover new potential targets of cancer therapeutic strategies.</p>","PeriodicalId":9243,"journal":{"name":"British Journal of Cancer","volume":" ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41416-025-02939-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Emerging evidence suggests that non-coding somatic single nucleotide variants (SNVs) in cis-regulatory elements (CREs) contribute to cancer by disrupting gene expression networks. However, the role of non-coding SNVs in cancer, particularly neuroblastoma, remains largely unclear.
Methods: SNVs effect on CREs activity was evaluated by luciferase assays. Motif analysis and ChIP-qPCR experiments were employed to reveal the transcription factors (TFs) involved in these processes. We exploited CRISPR-Cas9 experiments to elucidate the role of these SNVs on the CREs target genes expression. Cell proliferation and invasion assays were performed to assess their role in neuroblastoma tumorigenesis.
Results: Our findings demonstrate that non-coding SNVs modify the transcriptional activity of two CREs altering the binding of STAT3 and SIN3A. Therefore, these SNVs reduce the expression of CTTNBP2 and MCF2L. We demonstrate that these two genes act as tumor suppressor in neuroblastoma. These pathogenetic SNVs may serve as oncogenic drivers by impairing the transcriptional programs essential for neuronal development and differentiation in which both the investigated TFs and target genes are involved.
Conclusion: Overall, the understanding of the functional role of non-coding variants elucidates their impact on tumorigenesis and can uncover new potential targets of cancer therapeutic strategies.
期刊介绍:
The British Journal of Cancer is one of the most-cited general cancer journals, publishing significant advances in translational and clinical cancer research.It also publishes high-quality reviews and thought-provoking comment on all aspects of cancer prevention,diagnosis and treatment.