Elevated serum levels of GPX4, NDUFS4, PRDX5, and TXNRD2 as predictive biomarkers for castration resistance in prostate cancer patients: an exploratory study.
Rong Wang, Shaopeng Wang, Yuanyuan Mi, Tianyi Huang, Jun Wang, Jiang Ni, Jian Wang, Jian Yin, Menglu Li, Xuebin Ran, Shuangyi Fan, Qiaoyang Sun, Soo Yong Tan, H Phillip Koeffler, Lingwen Ding, Yong Q Chen, Ninghan Feng
{"title":"Elevated serum levels of GPX4, NDUFS4, PRDX5, and TXNRD2 as predictive biomarkers for castration resistance in prostate cancer patients: an exploratory study.","authors":"Rong Wang, Shaopeng Wang, Yuanyuan Mi, Tianyi Huang, Jun Wang, Jiang Ni, Jian Wang, Jian Yin, Menglu Li, Xuebin Ran, Shuangyi Fan, Qiaoyang Sun, Soo Yong Tan, H Phillip Koeffler, Lingwen Ding, Yong Q Chen, Ninghan Feng","doi":"10.1038/s41416-025-02947-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Prostate cancer (PCa) is a heterogeneous disease affecting over 14% of the male population worldwide. Although patients often respond positively to initial treatments within the first 2-3 years, many eventually develop a more lethal form of the disease known as castration-resistant PCa (CRPC). At present, no biomarkers that predict the onset of CRPC are available. This study aims to provide insights into the diagnosis and prediction of CRPC emergence.</p><p><strong>Methods: </strong>Protein expression dynamics were analysed in drug (androgen receptor inhibitor)-tolerant persister (DTP) and drug withdrawal cells using proteomics to identify potential biomarkers. These biomarkers were subsequently validated using a mouse model, 180-paired carcinoma/benign tissues, and 482 serum samples. Five machine learning algorithms were employed to build clinical prediction models, wherein the SHapley Additive exPlanation (SHAP) framework was used to interpret the best-performing model. Moreover, three regression models were developed to determine the Time from initial PCa diagnosis to CRPC development (TPC) in patients.</p><p><strong>Results: </strong>We identified that the protein expression levels of GPX4, NDUFS4, PRDX5, and TXNRD2 were significantly upregulated in PCa patients, particularly in those with CRPC. Among the tested machine learning models, the random forest and extreme gradient boosting models performed best on tissue and serum cohorts, achieving AUCs of 0.958 and 0.988, respectively. In addition, a significant inverse correlation was observed between TPC and serum levels of these four biomarkers. This correlation was formulated in three regression models, which achieved the smallest mean absolute error of 1.903 on independent datasets for predicting CRPC emergence.</p><p><strong>Conclusion: </strong>Our study provides new insights into the role of DTP cells in CRPC development. The quad protein panel identified in our study, along with the post hoc and intrinsically explainable prediction models, may serve as a convenient and real-time prognostic tool, addressing the current lack of clinical biomarkers for CRPC.</p>","PeriodicalId":9243,"journal":{"name":"British Journal of Cancer","volume":" ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41416-025-02947-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Prostate cancer (PCa) is a heterogeneous disease affecting over 14% of the male population worldwide. Although patients often respond positively to initial treatments within the first 2-3 years, many eventually develop a more lethal form of the disease known as castration-resistant PCa (CRPC). At present, no biomarkers that predict the onset of CRPC are available. This study aims to provide insights into the diagnosis and prediction of CRPC emergence.
Methods: Protein expression dynamics were analysed in drug (androgen receptor inhibitor)-tolerant persister (DTP) and drug withdrawal cells using proteomics to identify potential biomarkers. These biomarkers were subsequently validated using a mouse model, 180-paired carcinoma/benign tissues, and 482 serum samples. Five machine learning algorithms were employed to build clinical prediction models, wherein the SHapley Additive exPlanation (SHAP) framework was used to interpret the best-performing model. Moreover, three regression models were developed to determine the Time from initial PCa diagnosis to CRPC development (TPC) in patients.
Results: We identified that the protein expression levels of GPX4, NDUFS4, PRDX5, and TXNRD2 were significantly upregulated in PCa patients, particularly in those with CRPC. Among the tested machine learning models, the random forest and extreme gradient boosting models performed best on tissue and serum cohorts, achieving AUCs of 0.958 and 0.988, respectively. In addition, a significant inverse correlation was observed between TPC and serum levels of these four biomarkers. This correlation was formulated in three regression models, which achieved the smallest mean absolute error of 1.903 on independent datasets for predicting CRPC emergence.
Conclusion: Our study provides new insights into the role of DTP cells in CRPC development. The quad protein panel identified in our study, along with the post hoc and intrinsically explainable prediction models, may serve as a convenient and real-time prognostic tool, addressing the current lack of clinical biomarkers for CRPC.
期刊介绍:
The British Journal of Cancer is one of the most-cited general cancer journals, publishing significant advances in translational and clinical cancer research.It also publishes high-quality reviews and thought-provoking comment on all aspects of cancer prevention,diagnosis and treatment.