Murtaza Ahmad Khanday, Danish Ahmad Shergujri, Aisha Noor, Shahid Fayaz, Syed Naiem Raza, Reyaz Hassan Mir, Nisar Ahmad Khan
{"title":"Cellulose and Cellulose Nanomaterials: Recent Research and Applications in Medical Field.","authors":"Murtaza Ahmad Khanday, Danish Ahmad Shergujri, Aisha Noor, Shahid Fayaz, Syed Naiem Raza, Reyaz Hassan Mir, Nisar Ahmad Khan","doi":"10.2174/0113862073334330241105095235","DOIUrl":null,"url":null,"abstract":"<p><p>Cellulose, the most prevalent biopolymer in the world, is comprehensively reviewed. Cellulose occurs in fibrillar patterns with alternating crystalline and amorphous regions. The non-toxic and -friendly nature of cellulose has made it beneficial in many fields, such as pharmaceuticals, biomedical, nanotechnology, etc. Numerous sources, including the plant cell wall and wood, some types of bacteria, algae, and tunicates can provide cellulose. This polysaccharide is composed of a straight chain of d-glucose units attached by β (1 → 4) that extend in number from several hundred to thousands. This review details the recent progress in the synthesis of cellulose nanofibers or nanofibrillated cellulose, cellulose nanocrystals, commonly referred to as nanocellulose, and bacterial cellulose. The methodologies and procedures for evaluating the morphology, purity, crystallinity, mechanical, rheological, and other characteristics of cellulose micro/nanomaterials are covered in this review. The current study also discusses several ways to functionalize CNFs, CNCs, and BC. Finally, a guide to the synthesis of cellulose nanocomposites is provided, along with possible uses in the biomedical field, such as wound healing, bone tissue engineering, and artificial blood vessel production. Additionally, applications related to the pharmaceutical industry are also highlighted.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073334330241105095235","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulose, the most prevalent biopolymer in the world, is comprehensively reviewed. Cellulose occurs in fibrillar patterns with alternating crystalline and amorphous regions. The non-toxic and -friendly nature of cellulose has made it beneficial in many fields, such as pharmaceuticals, biomedical, nanotechnology, etc. Numerous sources, including the plant cell wall and wood, some types of bacteria, algae, and tunicates can provide cellulose. This polysaccharide is composed of a straight chain of d-glucose units attached by β (1 → 4) that extend in number from several hundred to thousands. This review details the recent progress in the synthesis of cellulose nanofibers or nanofibrillated cellulose, cellulose nanocrystals, commonly referred to as nanocellulose, and bacterial cellulose. The methodologies and procedures for evaluating the morphology, purity, crystallinity, mechanical, rheological, and other characteristics of cellulose micro/nanomaterials are covered in this review. The current study also discusses several ways to functionalize CNFs, CNCs, and BC. Finally, a guide to the synthesis of cellulose nanocomposites is provided, along with possible uses in the biomedical field, such as wound healing, bone tissue engineering, and artificial blood vessel production. Additionally, applications related to the pharmaceutical industry are also highlighted.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.