CircMRP4 orchestrates podocytes injury via the miR-499-5p/RRAGB/mTORC1 axis in diabetic kidney disease

IF 4.4 2区 生物学 Q2 CELL BIOLOGY Cellular signalling Pub Date : 2025-01-20 DOI:10.1016/j.cellsig.2025.111611
Shujun Deng , Lingzhi Huang , Yawen Shao , Yongsheng Xie , Siming Yuan , Liqin Tang
{"title":"CircMRP4 orchestrates podocytes injury via the miR-499-5p/RRAGB/mTORC1 axis in diabetic kidney disease","authors":"Shujun Deng ,&nbsp;Lingzhi Huang ,&nbsp;Yawen Shao ,&nbsp;Yongsheng Xie ,&nbsp;Siming Yuan ,&nbsp;Liqin Tang","doi":"10.1016/j.cellsig.2025.111611","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic kidney disease<span><span><sup>2</sup></span></span> (DKD) is a chronic complication of diabetes characterized by kidney damage due to persistent hyperglycemia. A growing number of evidence indicated that circular RNAs<span><span><sup>3</sup></span></span> (circRNAs) play a crucial role in diabetes and associated complications. However, the function and mechanism of circRNAs in DKD remain unclear. Herein, we investigated the expression profiles of circRNAs in DKD mice compared to non-diabetic mice using RNA-seq analysis. A novel circRNA, circMRP4, derived from the circularization of Multidrug resistance-associated protein 4<span><span><sup>4</sup></span></span> (MRP4) was identified. The expression of circMRP4 was significantly increased in both kidney tissues of DKD and mouse podocytes exposed to high glucose<span><span><sup>5</sup></span></span> (HG). In addition, knockdown of circMRP4 alleviated podocytes apoptosis and inflammation induced by HG, while circMRP4 overexpression resulted in the opposite impact. Dual-luciferase reporter, RNA immunoprecipitation and RNA pull-down assay demonstrated that circMRP4 could directly target miR-499-5p which was closely associated with podocytes apoptosis and inflammation. Furthermore, circMRP4 was found to act as a sponge for miR-499-5p, leading to the upregulation of its target RRAGB, thereby activating the mTORC1/P70S6K signaling. In summary, our findings suggested that circMRP4 mediated podocytes apoptosis and inflammation in DKD by modulating the miR-499-5p/RRAGB/mTORC1/P70S6K axis, highlighting circMRP4 as a potential therapeutic target for DKD.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"127 ","pages":"Article 111611"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656825000245","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic kidney disease2 (DKD) is a chronic complication of diabetes characterized by kidney damage due to persistent hyperglycemia. A growing number of evidence indicated that circular RNAs3 (circRNAs) play a crucial role in diabetes and associated complications. However, the function and mechanism of circRNAs in DKD remain unclear. Herein, we investigated the expression profiles of circRNAs in DKD mice compared to non-diabetic mice using RNA-seq analysis. A novel circRNA, circMRP4, derived from the circularization of Multidrug resistance-associated protein 44 (MRP4) was identified. The expression of circMRP4 was significantly increased in both kidney tissues of DKD and mouse podocytes exposed to high glucose5 (HG). In addition, knockdown of circMRP4 alleviated podocytes apoptosis and inflammation induced by HG, while circMRP4 overexpression resulted in the opposite impact. Dual-luciferase reporter, RNA immunoprecipitation and RNA pull-down assay demonstrated that circMRP4 could directly target miR-499-5p which was closely associated with podocytes apoptosis and inflammation. Furthermore, circMRP4 was found to act as a sponge for miR-499-5p, leading to the upregulation of its target RRAGB, thereby activating the mTORC1/P70S6K signaling. In summary, our findings suggested that circMRP4 mediated podocytes apoptosis and inflammation in DKD by modulating the miR-499-5p/RRAGB/mTORC1/P70S6K axis, highlighting circMRP4 as a potential therapeutic target for DKD.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular signalling
Cellular signalling 生物-细胞生物学
CiteScore
8.40
自引率
0.00%
发文量
250
审稿时长
27 days
期刊介绍: Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo. Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.
期刊最新文献
Editorial Board CircHOMER1 promotes silica-induced pulmonary fibrosis by binding to HuR and stabilizing NOX4 mRNA. Curcumin chemo-sensitizes intrinsic apoptosis through ROS-mediated mitochondrial hyperpolarization and DNA damage in breast cancer cells Editorial Board Game-changing breakthroughs to redefine the landscape of the renin–angiotensin–aldosterone system in health and disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1