The roles of IDH2 and glutathione metabolism in cetuximab resistance in head and neck squamous cell carcinoma investigated by metabolomics and transcriptomics

IF 4.4 2区 生物学 Q2 CELL BIOLOGY Cellular signalling Pub Date : 2025-01-20 DOI:10.1016/j.cellsig.2025.111620
Shousen Hu , Zian Wang , Xu Ding , Daoke Yao , Yue Du , Xiangzhen Kong
{"title":"The roles of IDH2 and glutathione metabolism in cetuximab resistance in head and neck squamous cell carcinoma investigated by metabolomics and transcriptomics","authors":"Shousen Hu ,&nbsp;Zian Wang ,&nbsp;Xu Ding ,&nbsp;Daoke Yao ,&nbsp;Yue Du ,&nbsp;Xiangzhen Kong","doi":"10.1016/j.cellsig.2025.111620","DOIUrl":null,"url":null,"abstract":"<div><div>Cetuximab resistance is a significant challenge in the treatment of head and neck squamous cell carcinoma (HNSCC). In this study, cetuximab-resistant HNSCC cell lines were established, and untargeted metabolomics was used to detect differences in metabolite profiles between sensitive and resistant cell lines. It was found that glutathione metabolism significantly differed between the sensitive and resistant lines. Combining these findings with transcriptome data, correlation analysis of metabolites revealed that IDH2 regulated glutathione metabolism and contributed to cetuximab resistance in FaDu cells. <em>In vitro</em> experiments showed that IDH2 was highly expressed in FaDu-CR cells, and IDH2 knockdown significantly enhanced the sensitivity of FaDu and FaDu-CR cells to cetuximab. IDH2 knockdown reduced GSH levels and GPX4 expression in FaDu and FaDu-CR cells under cetuximab treatment, while increasing lipid ROS levels. <em>In vivo</em> experiments demonstrated that IDH2 knockdown decreased the tumorigenic ability of FaDu-CR cells in nude mice treated with cetuximab, as well as reduced GPX4 and Ki67 levels in tumor tissues. In conclusion, IDH2 regulated glutathione metabolism and contributed to cetuximab resistance in HNSCC. This study explores strategies to ameliorate cetuximab resistance in HNSCC preclinical models, providing new insights for reversing cetuximab resistance in HNSCC.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"127 ","pages":"Article 111620"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656825000336","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cetuximab resistance is a significant challenge in the treatment of head and neck squamous cell carcinoma (HNSCC). In this study, cetuximab-resistant HNSCC cell lines were established, and untargeted metabolomics was used to detect differences in metabolite profiles between sensitive and resistant cell lines. It was found that glutathione metabolism significantly differed between the sensitive and resistant lines. Combining these findings with transcriptome data, correlation analysis of metabolites revealed that IDH2 regulated glutathione metabolism and contributed to cetuximab resistance in FaDu cells. In vitro experiments showed that IDH2 was highly expressed in FaDu-CR cells, and IDH2 knockdown significantly enhanced the sensitivity of FaDu and FaDu-CR cells to cetuximab. IDH2 knockdown reduced GSH levels and GPX4 expression in FaDu and FaDu-CR cells under cetuximab treatment, while increasing lipid ROS levels. In vivo experiments demonstrated that IDH2 knockdown decreased the tumorigenic ability of FaDu-CR cells in nude mice treated with cetuximab, as well as reduced GPX4 and Ki67 levels in tumor tissues. In conclusion, IDH2 regulated glutathione metabolism and contributed to cetuximab resistance in HNSCC. This study explores strategies to ameliorate cetuximab resistance in HNSCC preclinical models, providing new insights for reversing cetuximab resistance in HNSCC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular signalling
Cellular signalling 生物-细胞生物学
CiteScore
8.40
自引率
0.00%
发文量
250
审稿时长
27 days
期刊介绍: Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo. Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.
期刊最新文献
Editorial Board CircHOMER1 promotes silica-induced pulmonary fibrosis by binding to HuR and stabilizing NOX4 mRNA. Curcumin chemo-sensitizes intrinsic apoptosis through ROS-mediated mitochondrial hyperpolarization and DNA damage in breast cancer cells Editorial Board Game-changing breakthroughs to redefine the landscape of the renin–angiotensin–aldosterone system in health and disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1