Fei Lu, Jiaxi Zou, Weiming Xu, Fangyuan Zhang, Wenyi Nie, Yue Zhao, Lijie Jiang, Lizhe Liang, Jingqing Hu
{"title":"Mechanism of HJ11 Decoction in the Treatment of Atherosclerosis Based on Network Pharmacology and Experimental Validation.","authors":"Fei Lu, Jiaxi Zou, Weiming Xu, Fangyuan Zhang, Wenyi Nie, Yue Zhao, Lijie Jiang, Lizhe Liang, Jingqing Hu","doi":"10.2174/0113862073356770241218065012","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>HJ11 (HJ11 decoction), which is based on the traditional prescription Si-Miao-Yong-An decoction, has exerted a remarkable effect on atherosclerosis (AS). Nevertheless, the main components and underlying mechanisms of HJ11 for treating AS remain unclear.</p><p><strong>Aim of the study: </strong>This study was designed to elucidate the mechanism of HJ11 in the treatment of AS through network pharmacology and in vivo experimental validation.</p><p><strong>Methods: </strong>Network pharmacology was employed to explore the primary bioactive components and targets of HJ11. AS-related genes were obtained from the GeneCards and DisGeNET databases and screened for intersections with HJ11. A herb-compound-target interaction network was constructed by Cytoscape 3.9.1, and molecular docking analyses were constructed on key targets. By using a mouse model, the mechanism of action of HJ11 was further confirmed.</p><p><strong>Results: </strong>A total of 231 active components of HJ11, 1681 AS-related genes, and 156 common targets were identified. Through the establishment of numerous networks, it was discovered that the main association of the mechanism of HJ11 in AS therapy pertained to anti-inflammation. Important substances included quercetin, kaempferol, and luteolin, while TNF-α, AKT1, IL-6, and VEGFA were the main targets. Molecular docking demonstrated that there were favorable binding interactions between active drugs (quercetin, kaempferol, and luteolin) and targets (TNF-α, AKT1, IL-6, and VEGFA). In the in vivo study, HJ11 reduced the expression of TNF-α, AKT1, IL-6, and VEGFA at both the mRNA and protein levels, inhibited atherosclerotic lesions in AS mouse models, and retarded the development of retroarterioid sclerosis.</p><p><strong>Conclusions: </strong>HJ11 can inhibit inflammation and the progression of AS, and the mechanism might involve downregulating the expression of TNF-α, AKT1, IL-6, and VEGFA.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073356770241218065012","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: HJ11 (HJ11 decoction), which is based on the traditional prescription Si-Miao-Yong-An decoction, has exerted a remarkable effect on atherosclerosis (AS). Nevertheless, the main components and underlying mechanisms of HJ11 for treating AS remain unclear.
Aim of the study: This study was designed to elucidate the mechanism of HJ11 in the treatment of AS through network pharmacology and in vivo experimental validation.
Methods: Network pharmacology was employed to explore the primary bioactive components and targets of HJ11. AS-related genes were obtained from the GeneCards and DisGeNET databases and screened for intersections with HJ11. A herb-compound-target interaction network was constructed by Cytoscape 3.9.1, and molecular docking analyses were constructed on key targets. By using a mouse model, the mechanism of action of HJ11 was further confirmed.
Results: A total of 231 active components of HJ11, 1681 AS-related genes, and 156 common targets were identified. Through the establishment of numerous networks, it was discovered that the main association of the mechanism of HJ11 in AS therapy pertained to anti-inflammation. Important substances included quercetin, kaempferol, and luteolin, while TNF-α, AKT1, IL-6, and VEGFA were the main targets. Molecular docking demonstrated that there were favorable binding interactions between active drugs (quercetin, kaempferol, and luteolin) and targets (TNF-α, AKT1, IL-6, and VEGFA). In the in vivo study, HJ11 reduced the expression of TNF-α, AKT1, IL-6, and VEGFA at both the mRNA and protein levels, inhibited atherosclerotic lesions in AS mouse models, and retarded the development of retroarterioid sclerosis.
Conclusions: HJ11 can inhibit inflammation and the progression of AS, and the mechanism might involve downregulating the expression of TNF-α, AKT1, IL-6, and VEGFA.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.