Elucidating the causal relationship between gut microbiota, metabolites, and diabetic nephropathy in European patients: Revelations from genome-wide bidirectional mendelian randomization analysis.

IF 3.9 2区 医学 Q2 ENDOCRINOLOGY & METABOLISM Frontiers in Endocrinology Pub Date : 2025-01-08 eCollection Date: 2024-01-01 DOI:10.3389/fendo.2024.1391891
Siyuan Song, Li Ning, Jiangyi Yu
{"title":"Elucidating the causal relationship between gut microbiota, metabolites, and diabetic nephropathy in European patients: Revelations from genome-wide bidirectional mendelian randomization analysis.","authors":"Siyuan Song, Li Ning, Jiangyi Yu","doi":"10.3389/fendo.2024.1391891","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Previous observational studies suggest a potential link between gut microbiota, metabolites, and diabetic nephropathy. However, the exact causal relationship among these factors remains unclear.</p><p><strong>Method: </strong>We conducted a two-sample bidirectional Mendelian randomization study using summary statistics from the IEU OpenGWAS Project database to investigate gut microbiota, metabolites, and diabetic nephropathy. A range of methods, including inverse variance weighting, MR-Egger, weighted median, and simple median, were applied to examine causal associations. Sensitivity analyses were performed to assess the robustness of the results. Additionally, reverse Mendelian randomization analysis was conducted, treating significant gut microbiota as the outcome, to evaluate effects and perform sensitivity testing. This comprehensive approach provided an in-depth assessment of the interactions among gut microbiota, metabolites, and diabetic nephropathy.</p><p><strong>Result: </strong>The Inverse Variance Weighted estimates revealed that the abundance of <i>Lachnospiraceae, Parasutterella</i>, and <i>Eubacterium</i> exhibited negative causal effects on diabetic nephropathy, while <i>Coprococcus, Sutterella, Faecalibacterium prausnitzii</i>, and <i>Bacteroides vulgatus</i> showed protective causal effects against the condition. However, reverse Mendelian randomization analysis did not identify any significant associations between diabetic nephropathy and the identified gut microbiota. Furthermore, the estimates indicated that Cholesterol, Pyridoxate, Hexanoylcarnitine, X-12007, Octanoylcarnitine, 10-nonadecenoate (19:1n9), X-12734, and the average number of double bonds in a fatty acid chain had negative causal effects on diabetic nephropathy. In contrast, Methionine, Glycodeoxycholate, X-06351, 1-stearoylglycerol (1-monostearin), 5-dodecenoate (12:1n7), X-13859, 2-hydroxyglutarate, Glycoproteins, Phospholipids in IDL, and the concentration of small HDL particles demonstrated protective causal effects. Notably, sensitivity analyses did not detect any heterogeneity or horizontal pleiotropy, ensuring the robustness of the findings.</p><p><strong>Conclusion: </strong>Modulating gut microbiota diversity and composition offers a promising strategy for improving the incidence and prognosis of diabetic nephropathy. This highlights the need for future clinical trials focusing on microbiome-based interventions, potentially utilizing microbiome-dependent metabolites. Such approaches could transform the treatment and management of diabetic nephropathy and its associated risk factors, paving the way for more effective therapeutic strategies to combat this debilitating condition.</p>","PeriodicalId":12447,"journal":{"name":"Frontiers in Endocrinology","volume":"15 ","pages":"1391891"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750691/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fendo.2024.1391891","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Previous observational studies suggest a potential link between gut microbiota, metabolites, and diabetic nephropathy. However, the exact causal relationship among these factors remains unclear.

Method: We conducted a two-sample bidirectional Mendelian randomization study using summary statistics from the IEU OpenGWAS Project database to investigate gut microbiota, metabolites, and diabetic nephropathy. A range of methods, including inverse variance weighting, MR-Egger, weighted median, and simple median, were applied to examine causal associations. Sensitivity analyses were performed to assess the robustness of the results. Additionally, reverse Mendelian randomization analysis was conducted, treating significant gut microbiota as the outcome, to evaluate effects and perform sensitivity testing. This comprehensive approach provided an in-depth assessment of the interactions among gut microbiota, metabolites, and diabetic nephropathy.

Result: The Inverse Variance Weighted estimates revealed that the abundance of Lachnospiraceae, Parasutterella, and Eubacterium exhibited negative causal effects on diabetic nephropathy, while Coprococcus, Sutterella, Faecalibacterium prausnitzii, and Bacteroides vulgatus showed protective causal effects against the condition. However, reverse Mendelian randomization analysis did not identify any significant associations between diabetic nephropathy and the identified gut microbiota. Furthermore, the estimates indicated that Cholesterol, Pyridoxate, Hexanoylcarnitine, X-12007, Octanoylcarnitine, 10-nonadecenoate (19:1n9), X-12734, and the average number of double bonds in a fatty acid chain had negative causal effects on diabetic nephropathy. In contrast, Methionine, Glycodeoxycholate, X-06351, 1-stearoylglycerol (1-monostearin), 5-dodecenoate (12:1n7), X-13859, 2-hydroxyglutarate, Glycoproteins, Phospholipids in IDL, and the concentration of small HDL particles demonstrated protective causal effects. Notably, sensitivity analyses did not detect any heterogeneity or horizontal pleiotropy, ensuring the robustness of the findings.

Conclusion: Modulating gut microbiota diversity and composition offers a promising strategy for improving the incidence and prognosis of diabetic nephropathy. This highlights the need for future clinical trials focusing on microbiome-based interventions, potentially utilizing microbiome-dependent metabolites. Such approaches could transform the treatment and management of diabetic nephropathy and its associated risk factors, paving the way for more effective therapeutic strategies to combat this debilitating condition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Endocrinology
Frontiers in Endocrinology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
5.70
自引率
9.60%
发文量
3023
审稿时长
14 weeks
期刊介绍: Frontiers in Endocrinology is a field journal of the "Frontiers in" journal series. In today’s world, endocrinology is becoming increasingly important as it underlies many of the challenges societies face - from obesity and diabetes to reproduction, population control and aging. Endocrinology covers a broad field from basic molecular and cellular communication through to clinical care and some of the most crucial public health issues. The journal, thus, welcomes outstanding contributions in any domain of endocrinology. Frontiers in Endocrinology publishes articles on the most outstanding discoveries across a wide research spectrum of Endocrinology. The mission of Frontiers in Endocrinology is to bring all relevant Endocrinology areas together on a single platform.
期刊最新文献
Antioxidant therapy for infertile couples: a comprehensive review of the current status and consideration of future prospects. Association between triglyceride-glucose index and endometriosis: results from a cross-sectional study and Mendelian randomization study. Efficacy of cartilage-targeted IGF-1 in a mouse model of growth hormone insensitivity. Exploring the role of metabolic pathways in TNBC immunotherapy: insights from single-cell and spatial transcriptomics. Extracellular vesicular microRNAs and cardiac hypertrophy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1