Macranthoside B Suppresses the Growth of Adenocarcinoma of Esophagogastric Junction by Regulating Iron Homeostasis and Ferroptosis through NRF2 Inhibition.

IF 2.3 4区 医学 Q3 ONCOLOGY Current cancer drug targets Pub Date : 2025-01-22 DOI:10.2174/0115680096370291250109103853
Lingling Wang, Guangzhao Pan, Sichao Tian, Che Zhang, Fangfang Tao, Jiang-Jiang Qin
{"title":"Macranthoside B Suppresses the Growth of Adenocarcinoma of Esophagogastric Junction by Regulating Iron Homeostasis and Ferroptosis through NRF2 Inhibition.","authors":"Lingling Wang, Guangzhao Pan, Sichao Tian, Che Zhang, Fangfang Tao, Jiang-Jiang Qin","doi":"10.2174/0115680096370291250109103853","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Macranthoside B (MB) is a saponin compound extracted from hon-eysuckle that has been reported to exhibit significant medicinal values, particularly anti-tumor activities. This study aimed to evaluate the anticancer efficacy of MB in treating adenocarci-noma of the esophagogastric junction (AEG) and elucidate its underlying mechanisms.</p><p><strong>Methods: </strong>Three AEG cell lines and normal gastric epithelial cells were used to assess the an-ticancer activity of MB in vitro. A series of experiments, including RNA sequencing (RNA-seq) analysis, transmission electron microscopy (TEM), immunofluorescence, and western blot assay, were conducted to validate the molecular mechanisms by which MB may mediate these physiological changes. Finally, we used shRNA assays to silence the key gene driving these changes and examined the expression of molecules involved in the affected pathways.</p><p><strong>Results: </strong>MB exhibited significant anti-AEG cell activity with IC50 values ranging from 9.5 to 12.7 μM. RNA-seq results indicated that MB treatment in AEG cells significantly altered mRNA levels of autophagy- and ferroptosis-related genes. Further experiments revealed that MB treatment led to the up-regulation of lipid reactive oxygen species (Lip-ROS), oxidative stress-related pathway genes, and LC3B-labeled autophagic vesicles in AEG cells. Moreover, MB mediated NCOA4-dependent ferritinophagy, disrupting iron homeostasis and causing subsequent ferroptosis. We further confirmed that the intrinsic connection between autophagy and ferroptosis was due to the inhibition of NRF2 by MB. The inhibition of NRF2 by MB triggered transcriptional repression of its downstream effector molecules HERC2 and VAMP8, thus stabilizing NCOA4.</p><p><strong>Conclusion: </strong>This study demonstrated MB to inhibit AEG cell growth by regulating iron ho-meostasis and inducing ferroptosis through the inhibition of NRF2, providing a basis for the development of novel drugs for AEG treatment.</p>","PeriodicalId":10816,"journal":{"name":"Current cancer drug targets","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current cancer drug targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680096370291250109103853","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Macranthoside B (MB) is a saponin compound extracted from hon-eysuckle that has been reported to exhibit significant medicinal values, particularly anti-tumor activities. This study aimed to evaluate the anticancer efficacy of MB in treating adenocarci-noma of the esophagogastric junction (AEG) and elucidate its underlying mechanisms.

Methods: Three AEG cell lines and normal gastric epithelial cells were used to assess the an-ticancer activity of MB in vitro. A series of experiments, including RNA sequencing (RNA-seq) analysis, transmission electron microscopy (TEM), immunofluorescence, and western blot assay, were conducted to validate the molecular mechanisms by which MB may mediate these physiological changes. Finally, we used shRNA assays to silence the key gene driving these changes and examined the expression of molecules involved in the affected pathways.

Results: MB exhibited significant anti-AEG cell activity with IC50 values ranging from 9.5 to 12.7 μM. RNA-seq results indicated that MB treatment in AEG cells significantly altered mRNA levels of autophagy- and ferroptosis-related genes. Further experiments revealed that MB treatment led to the up-regulation of lipid reactive oxygen species (Lip-ROS), oxidative stress-related pathway genes, and LC3B-labeled autophagic vesicles in AEG cells. Moreover, MB mediated NCOA4-dependent ferritinophagy, disrupting iron homeostasis and causing subsequent ferroptosis. We further confirmed that the intrinsic connection between autophagy and ferroptosis was due to the inhibition of NRF2 by MB. The inhibition of NRF2 by MB triggered transcriptional repression of its downstream effector molecules HERC2 and VAMP8, thus stabilizing NCOA4.

Conclusion: This study demonstrated MB to inhibit AEG cell growth by regulating iron ho-meostasis and inducing ferroptosis through the inhibition of NRF2, providing a basis for the development of novel drugs for AEG treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current cancer drug targets
Current cancer drug targets 医学-肿瘤学
CiteScore
5.40
自引率
0.00%
发文量
105
审稿时长
1 months
期刊介绍: Current Cancer Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular drug targets involved in cancer, e.g. disease specific proteins, receptors, enzymes and genes. Current Cancer Drug Targets publishes original research articles, letters, reviews / mini-reviews, drug clinical trial studies and guest edited thematic issues written by leaders in the field covering a range of current topics on drug targets involved in cancer. As the discovery, identification, characterization and validation of novel human drug targets for anti-cancer drug discovery continues to grow; this journal has become essential reading for all pharmaceutical scientists involved in drug discovery and development.
期刊最新文献
CDK8 as a therapeutic target for overall survival prediction in cervical squamous cell carcinoma (CESC). Preventive and Therapeutic effects of Metformin in Cancer: A Meta-Analysis of RCT and Cohort Studies. Targeting Glutamine Metabolic Reprogramming in Pancreatic Cancer: Current Insights and Future Directions. Macranthoside B Suppresses the Growth of Adenocarcinoma of Esophagogastric Junction by Regulating Iron Homeostasis and Ferroptosis through NRF2 Inhibition. Artificial Intelligence (AI) and Liquid Biopsy Transforming Early Detection of Liver Metastases in Gastrointestinal Cancers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1