Characterisation of periorbital mechanical allodynia in the reserpine-induced fibromyalgia model in mice: The role of the Schwann cell TRPA1/NOX1 signalling pathway.

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Free Radical Biology and Medicine Pub Date : 2025-01-20 DOI:10.1016/j.freeradbiomed.2025.01.040
Evelyne da Silva Brum, Lorenzo Landini, Daniel Souza Monteiro de Araújo, Matilde Marini, Pierangelo Geppetti, Romina Nassini, Francesco De Logu, Sara Marchesan Oliveira
{"title":"Characterisation of periorbital mechanical allodynia in the reserpine-induced fibromyalgia model in mice: The role of the Schwann cell TRPA1/NOX1 signalling pathway.","authors":"Evelyne da Silva Brum, Lorenzo Landini, Daniel Souza Monteiro de Araújo, Matilde Marini, Pierangelo Geppetti, Romina Nassini, Francesco De Logu, Sara Marchesan Oliveira","doi":"10.1016/j.freeradbiomed.2025.01.040","DOIUrl":null,"url":null,"abstract":"<p><p>Fibromyalgia (FM) is a complex and multifaceted condition characterized by a range of clinical symptoms, including widespread pain and a strong association with migraine headaches. Recent findings have underscored the role of oxidative stress and transient receptor potential ankyrin 1 (TRPA1) channel in migraine and FM. However, the precise mechanisms underlying the comorbidity between migraine and FM are unclear. Periorbital mechanical allodynia (PMA), which recapitulates one of the major symptoms of migraine, and the feed-forward mechanism driven by reactive oxygen species and TRPA1, were investigated in a reserpine-induced FM model in C57BL/6J mice, employing pharmacological interventions and genetic approaches. Reserpine-treated mice developed PMA (which was alleviated by antimigraine drugs) and increased endoneurial macrophages and oxidative stress markers in the trigeminal nerve tissues (neuroinflammation). These responses were absent upon macrophage depletion and by pharmacological inhibition or global genetic deletion of the TRPA1 channel. Furthermore, selective silencing of TRPA1 in Schwann cells attenuated both reserpine-induced PMA and neuroinflammation, while selective silencing of TRPA1 in sensory neurons reduced PMA but not neuroinflammation. In reserpine-treated mice, Schwann cell TRPA1 promoted NADPH oxidase 1-mediated reactive oxygen species generation and macrophage increase in the mouse trigeminal nerve, which sustains PMA. Targeting TRPA1 channels in Schwann cells could offer a novel therapeutic strategy for FM-related headaches.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2025.01.040","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fibromyalgia (FM) is a complex and multifaceted condition characterized by a range of clinical symptoms, including widespread pain and a strong association with migraine headaches. Recent findings have underscored the role of oxidative stress and transient receptor potential ankyrin 1 (TRPA1) channel in migraine and FM. However, the precise mechanisms underlying the comorbidity between migraine and FM are unclear. Periorbital mechanical allodynia (PMA), which recapitulates one of the major symptoms of migraine, and the feed-forward mechanism driven by reactive oxygen species and TRPA1, were investigated in a reserpine-induced FM model in C57BL/6J mice, employing pharmacological interventions and genetic approaches. Reserpine-treated mice developed PMA (which was alleviated by antimigraine drugs) and increased endoneurial macrophages and oxidative stress markers in the trigeminal nerve tissues (neuroinflammation). These responses were absent upon macrophage depletion and by pharmacological inhibition or global genetic deletion of the TRPA1 channel. Furthermore, selective silencing of TRPA1 in Schwann cells attenuated both reserpine-induced PMA and neuroinflammation, while selective silencing of TRPA1 in sensory neurons reduced PMA but not neuroinflammation. In reserpine-treated mice, Schwann cell TRPA1 promoted NADPH oxidase 1-mediated reactive oxygen species generation and macrophage increase in the mouse trigeminal nerve, which sustains PMA. Targeting TRPA1 channels in Schwann cells could offer a novel therapeutic strategy for FM-related headaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
期刊最新文献
The race within a race: Together on the marathon starting line but miles apart in the experience. Pink1-dependent mitophagy in vascular smooth muscle cells: Implications for arterial constriction. Altered mitochondrial unfolded protein response and protein quality control promote oxidative distress in down syndrome brain. The RNA chaperone Hfq is a novel regulator of catalase expression and hydrogen peroxide-induced oxidative stress response in Listeria monocytogenes EGD-e. NRF2 activation by 6-MSITC increases the generation of neuroprotective, soluble α amyloid precursor protein by inducing the metalloprotease gene ADAM17.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1