Transcriptome analysis of regenerated dermis stimulated by mechanical stretch.

IF 2.6 3区 生物学 Q2 GENETICS & HEREDITY Gene Pub Date : 2025-01-20 DOI:10.1016/j.gene.2025.149267
Zhantong Wang, Wei Liu, Ruoxue Bai, Yaotao Guo, Zhigang Wang, Xianjie Ma, Zhou Yu
{"title":"Transcriptome analysis of regenerated dermis stimulated by mechanical stretch.","authors":"Zhantong Wang, Wei Liu, Ruoxue Bai, Yaotao Guo, Zhigang Wang, Xianjie Ma, Zhou Yu","doi":"10.1016/j.gene.2025.149267","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mechanical stretch is utilized in the process of tissue expansion to promote skin regeneration, which is crucial for wound healing and organ reconstruction purposes. Enlarged dermal area is one of the significant histological characteristics of the expanded skin. However, the underlying biological processes and molecular pathways associated with dermal regeneration triggered by mechanical stretch are still not well understood.</p><p><strong>Methods: </strong>Twelve male Sprague-Dawley (SD) rats were divided into the expansion group and sham group randomly. Upon creating a rat scalp expansion model, the dermis was isolated from the full-thickness skin in both experimental groups for RNA sequencing. This process led to the identification of differentially expressed genes (DEGs). Subsequently, we conducted Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Gene Set Enrichment Analysis (GSEA) to identify the essential biological processes associated with dermal regeneration induced by mechanical stretch, leveraging data from the DEGs. A network of protein-protein interactions (PPI) was built to detect the critical modules and central genes. The expression levels of these hub genes were evaluated using quantitative real-time polymerase chain reaction (qPCR).</p><p><strong>Results: </strong>Increased expanded skin area and dermal thinning which represent the typical changes of expanded skin were observed in the expansion group. A total of 782 DEGs were identified in the expansion group relative to the sham group. The DEGs were associated with several biological processes, including the organization of the extracellular matrix, the enhancement of macrophage activation, and the promotion of angiogenesis, among others. Cell components encompassing Toll-like receptor 2-Toll-like receptor 6 protein complex, interstitial matrix, extracellular matrix (ECM), and collagen trimer were discovered. Molecular function categories including integrin binding, insulin-like growth factor binding, and fatty acid elongase activity were involved. The KEGG pathway analysis demonstrated the significant enrichment of pathways including the PI3K-Akt signaling pathway, fatty acid metabolism, and extracellular matrix-receptor interactions. GSEA results displayed that mechanical stretch correlated with the regulation of cell activation processes, cytokine-mediated signaling pathways, and immune system processes. PPI network resulted in the identification of 598 nodes along with a total of 5,304 interaction pairs between proteins. And ten hub genes containing Ccl2, Cxcl10, Fasn, Itgad, Cd163, Mmp9, Cd36, Tlr2, Igf1, and Wnt2 were identified by bioinformatics analysis and validated by qPCR.</p><p><strong>Conclusions: </strong>This in vivo study for the first time revealed the DEGs related to mechanical stretch stimulated dermal regeneration and identified the involved pathways and hub genes correlated with macrophage recruitment and polarization, fibroblast proliferation and ECM production and angiogenesis, which may benefit further studies aimed at developing therapeutic strategies for facilitating expanded skin regeneration.</p>","PeriodicalId":12499,"journal":{"name":"Gene","volume":" ","pages":"149267"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gene.2025.149267","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Mechanical stretch is utilized in the process of tissue expansion to promote skin regeneration, which is crucial for wound healing and organ reconstruction purposes. Enlarged dermal area is one of the significant histological characteristics of the expanded skin. However, the underlying biological processes and molecular pathways associated with dermal regeneration triggered by mechanical stretch are still not well understood.

Methods: Twelve male Sprague-Dawley (SD) rats were divided into the expansion group and sham group randomly. Upon creating a rat scalp expansion model, the dermis was isolated from the full-thickness skin in both experimental groups for RNA sequencing. This process led to the identification of differentially expressed genes (DEGs). Subsequently, we conducted Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Gene Set Enrichment Analysis (GSEA) to identify the essential biological processes associated with dermal regeneration induced by mechanical stretch, leveraging data from the DEGs. A network of protein-protein interactions (PPI) was built to detect the critical modules and central genes. The expression levels of these hub genes were evaluated using quantitative real-time polymerase chain reaction (qPCR).

Results: Increased expanded skin area and dermal thinning which represent the typical changes of expanded skin were observed in the expansion group. A total of 782 DEGs were identified in the expansion group relative to the sham group. The DEGs were associated with several biological processes, including the organization of the extracellular matrix, the enhancement of macrophage activation, and the promotion of angiogenesis, among others. Cell components encompassing Toll-like receptor 2-Toll-like receptor 6 protein complex, interstitial matrix, extracellular matrix (ECM), and collagen trimer were discovered. Molecular function categories including integrin binding, insulin-like growth factor binding, and fatty acid elongase activity were involved. The KEGG pathway analysis demonstrated the significant enrichment of pathways including the PI3K-Akt signaling pathway, fatty acid metabolism, and extracellular matrix-receptor interactions. GSEA results displayed that mechanical stretch correlated with the regulation of cell activation processes, cytokine-mediated signaling pathways, and immune system processes. PPI network resulted in the identification of 598 nodes along with a total of 5,304 interaction pairs between proteins. And ten hub genes containing Ccl2, Cxcl10, Fasn, Itgad, Cd163, Mmp9, Cd36, Tlr2, Igf1, and Wnt2 were identified by bioinformatics analysis and validated by qPCR.

Conclusions: This in vivo study for the first time revealed the DEGs related to mechanical stretch stimulated dermal regeneration and identified the involved pathways and hub genes correlated with macrophage recruitment and polarization, fibroblast proliferation and ECM production and angiogenesis, which may benefit further studies aimed at developing therapeutic strategies for facilitating expanded skin regeneration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Gene
Gene 生物-遗传学
CiteScore
6.10
自引率
2.90%
发文量
718
审稿时长
42 days
期刊介绍: Gene publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses.
期刊最新文献
Optimal control analysis on the spread of COVID-19: Impact of contact transmission and environmental contamination. A cross-tissue transcriptome-wide association study identifies new key genes in ischemic stroke. c-Myc-targeted therapy in breast cancer: A review of fundamentals and pharmacological Insights. From diagnosis to therapy: The role of LncRNA GAS5 in combatting some cancers affecting women. Relationship between apoptosis gene DNA methylation and fetal growth and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1