Ganoderma lucidum spore oil attenuates acute liver injury by modulating lipid metabolism and gut microbiota.

IF 3.1 3区 医学 Q2 CHEMISTRY, ANALYTICAL Journal of pharmaceutical and biomedical analysis Pub Date : 2025-01-16 DOI:10.1016/j.jpba.2025.116674
Jianying Liu, Yan Chen, Zhifeng Cen, Meiqi Hong, Binzhi Zhang, Xia Luo, Leqi Wang, Shasha Li, Xue Xiao, Qinqiang Long
{"title":"Ganoderma lucidum spore oil attenuates acute liver injury by modulating lipid metabolism and gut microbiota.","authors":"Jianying Liu, Yan Chen, Zhifeng Cen, Meiqi Hong, Binzhi Zhang, Xia Luo, Leqi Wang, Shasha Li, Xue Xiao, Qinqiang Long","doi":"10.1016/j.jpba.2025.116674","DOIUrl":null,"url":null,"abstract":"<p><p>The incidence of acute liver injury is increasing and poses a significant threat to human health. Ganoderma lucidum spore oil (GLSO), a lipid substance extracted from Ganoderma lucidum spore powder using supercritical CO<sub>2</sub> technology, has been investigated for its potential to prevent acute liver injury. However, the specific mechanism underlying the protective effects of GLSO remains incompletely understood. In this study, we investigated the preventive effect of GLSO on acute liver injury in rats, focusing on the gut microbiome and serum metabolomics. GLSO effectively alleviated liver dysfunction and reduced inflammation, leading to the prevention of acute liver injury in rats. Serum metabolomics analysis revealed that GLSO primarily modulated lipid metabolic pathways related to glycerophospholipid metabolism and sphingolipid metabolism. Specifically, GLSO decreased the levels of metabolites such as lysophosphatidylcholine (LPC), glycerophosphatidylcholine (GPC), and sphinganine 1-phosphate (SA1P), while increasing the levels of phosphatidylglycerol (PG) and digalactosylceramide (DGC). Gut microbiomics data indicated that GLSO effectively regulated the composition of the gut microbiota in rats with acute liver injury. Specifically, it increased the abundance of Firmicutes and decreased the abundance of Proteobacteria. Mantel test correlation analysis revealed a close relationship between gut microbial Burkholderiales and lipid metabolites in GLSO-mediated prevention of acute liver injury. GLSO exerts its preventive effects on acute liver injury by remodeling the gut microbiota and regulating lipid metabolism. These findings provide novel insights and potential directions for the development of new drugs targeting acute liver injury.</p>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"256 ","pages":"116674"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jpba.2025.116674","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The incidence of acute liver injury is increasing and poses a significant threat to human health. Ganoderma lucidum spore oil (GLSO), a lipid substance extracted from Ganoderma lucidum spore powder using supercritical CO2 technology, has been investigated for its potential to prevent acute liver injury. However, the specific mechanism underlying the protective effects of GLSO remains incompletely understood. In this study, we investigated the preventive effect of GLSO on acute liver injury in rats, focusing on the gut microbiome and serum metabolomics. GLSO effectively alleviated liver dysfunction and reduced inflammation, leading to the prevention of acute liver injury in rats. Serum metabolomics analysis revealed that GLSO primarily modulated lipid metabolic pathways related to glycerophospholipid metabolism and sphingolipid metabolism. Specifically, GLSO decreased the levels of metabolites such as lysophosphatidylcholine (LPC), glycerophosphatidylcholine (GPC), and sphinganine 1-phosphate (SA1P), while increasing the levels of phosphatidylglycerol (PG) and digalactosylceramide (DGC). Gut microbiomics data indicated that GLSO effectively regulated the composition of the gut microbiota in rats with acute liver injury. Specifically, it increased the abundance of Firmicutes and decreased the abundance of Proteobacteria. Mantel test correlation analysis revealed a close relationship between gut microbial Burkholderiales and lipid metabolites in GLSO-mediated prevention of acute liver injury. GLSO exerts its preventive effects on acute liver injury by remodeling the gut microbiota and regulating lipid metabolism. These findings provide novel insights and potential directions for the development of new drugs targeting acute liver injury.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
5.90%
发文量
588
审稿时长
37 days
期刊介绍: This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome. Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.
期刊最新文献
Identification and pharmacological properties of 2-(1H-indazole-3-carboxamido)-3,3-dimethylbutanoate (MDMB-INACA), N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1H-indazole-3-carboxamide (ADB-INACA), and N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-hexyl-1H-indazole-3-carboxamide (ADB-HINACA). Three sample preparation methods for clinical determination of CDK4/6 inhibitors with endocrine therapy in breast cancer patient plasma using LC-MS: Cross-validation (red), ecological (green) and economical (blue) assessment. Application of a dual channel MPTS-modified two-dimensional cell membrane chromatography system for rapid screening of effective ingredients in Saposhnikovia divaricata targeting inflammatory macrophages and fibroblast synovial cells in the treatment of rheumatoid arthritis. Application of bifunctional monomer surface MIP with MOFs nanocomposite for efficient trapping and analysis of luteolin in compound Anoectochilus roxburghii (Wall.) Lindl. oral liquid. Development of an LC-MS/MS method for the simultaneous quantification of 11 perfluoroalkyl compounds in mouse plasma for toxicokinetic applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1