Unified Mobile App for Streamlining Verbal Autopsy and Cause of Death Assignment in India: Design and Development Study.

IF 2 Q3 HEALTH CARE SCIENCES & SERVICES JMIR Formative Research Pub Date : 2025-01-10 DOI:10.2196/59937
Harleen Kaur, Stuti Tripathi, Manjeet Singh Chalga, Sudhir K Benara, Amit Dhiman, Shefali Gupta, Saritha Nair, Geetha Menon, B K Gulati, Sandeep Sharma, Saurabh Sharma
{"title":"Unified Mobile App for Streamlining Verbal Autopsy and Cause of Death Assignment in India: Design and Development Study.","authors":"Harleen Kaur, Stuti Tripathi, Manjeet Singh Chalga, Sudhir K Benara, Amit Dhiman, Shefali Gupta, Saritha Nair, Geetha Menon, B K Gulati, Sandeep Sharma, Saurabh Sharma","doi":"10.2196/59937","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Verbal autopsy (VA) has been a crucial tool in ascertaining population-level cause of death (COD) estimates, specifically in countries where medical certification of COD is relatively limited. The World Health Organization has released an updated instrument (Verbal Autopsy Instrument 2022) that supports electronic data collection methods along with analytical software for assigning COD. This questionnaire encompasses the primary signs and symptoms associated with prevalent diseases across all age groups. Traditional methods have primarily involved paper-based questionnaires and physician-coded approaches for COD assignment, which is time-consuming and resource-intensive. Although computer-coded algorithms have advanced the COD assignment process, data collection in densely populated countries like India remains a logistical challenge.</p><p><strong>Objective: </strong>This study aimed to develop an Android-based mobile app specifically tailored for streamlining VA data collection by leveraging the existing Indian public health workforce. The app has been designed to integrate real-time data collection by frontline health workers and seamless data transmission and digital reporting of COD by physicians. This process aimed to enhance the efficiency and accuracy of COD assignment through VA.</p><p><strong>Methods: </strong>The app was developed using Android Studio, the primary integrated development environment for developing Android apps using Java. The front-end interface was developed using XML, while SQLite and MySQL were employed to streamline complete data storage on the local and server databases, respectively. The communication between the app and the server was facilitated through a PHP application programming interface to synchronize data from the local to the server database. The complete prototype was specifically built to reduce manual intervention and automate VA data collection.</p><p><strong>Results: </strong>The app was developed to align with the current Indian public health system for district-level COD estimation. By leveraging this mobile app, the average duration required for VA data collection to ascertainment of COD, which typically ranges from 6 to 8 months, is expected to decrease by approximately 80%, reducing it to about 1-2 months. Based on annual caseload projections, the smallest administrative public health unit, health and wellness centers, is anticipated to handle 35-40 VA cases annually, while medical officers at primary health centers are projected to manage 150-200 physician-certified VAs each year. The app's data collection and transmission efficiency were further improved based on feedback from user and subject area experts.</p><p><strong>Conclusions: </strong>The development of a unified mobile app could streamline the VA process, enabling the generation of accurate national and subnational COD estimates. This mobile app can be further piloted and scaled to different regions to integrate the automated VA model into the existing public health system for generating comprehensive mortality statistics in India.</p>","PeriodicalId":14841,"journal":{"name":"JMIR Formative Research","volume":"9 ","pages":"e59937"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Formative Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/59937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Verbal autopsy (VA) has been a crucial tool in ascertaining population-level cause of death (COD) estimates, specifically in countries where medical certification of COD is relatively limited. The World Health Organization has released an updated instrument (Verbal Autopsy Instrument 2022) that supports electronic data collection methods along with analytical software for assigning COD. This questionnaire encompasses the primary signs and symptoms associated with prevalent diseases across all age groups. Traditional methods have primarily involved paper-based questionnaires and physician-coded approaches for COD assignment, which is time-consuming and resource-intensive. Although computer-coded algorithms have advanced the COD assignment process, data collection in densely populated countries like India remains a logistical challenge.

Objective: This study aimed to develop an Android-based mobile app specifically tailored for streamlining VA data collection by leveraging the existing Indian public health workforce. The app has been designed to integrate real-time data collection by frontline health workers and seamless data transmission and digital reporting of COD by physicians. This process aimed to enhance the efficiency and accuracy of COD assignment through VA.

Methods: The app was developed using Android Studio, the primary integrated development environment for developing Android apps using Java. The front-end interface was developed using XML, while SQLite and MySQL were employed to streamline complete data storage on the local and server databases, respectively. The communication between the app and the server was facilitated through a PHP application programming interface to synchronize data from the local to the server database. The complete prototype was specifically built to reduce manual intervention and automate VA data collection.

Results: The app was developed to align with the current Indian public health system for district-level COD estimation. By leveraging this mobile app, the average duration required for VA data collection to ascertainment of COD, which typically ranges from 6 to 8 months, is expected to decrease by approximately 80%, reducing it to about 1-2 months. Based on annual caseload projections, the smallest administrative public health unit, health and wellness centers, is anticipated to handle 35-40 VA cases annually, while medical officers at primary health centers are projected to manage 150-200 physician-certified VAs each year. The app's data collection and transmission efficiency were further improved based on feedback from user and subject area experts.

Conclusions: The development of a unified mobile app could streamline the VA process, enabling the generation of accurate national and subnational COD estimates. This mobile app can be further piloted and scaled to different regions to integrate the automated VA model into the existing public health system for generating comprehensive mortality statistics in India.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JMIR Formative Research
JMIR Formative Research Medicine-Medicine (miscellaneous)
CiteScore
2.70
自引率
9.10%
发文量
579
审稿时长
12 weeks
期刊最新文献
A Digital Tool (Technology-Assisted Problem Management Plus) for Lay Health Workers to Address Common Mental Health Disorders: Co-production and Usability Study in Pakistan. Factors Influencing Telemedicine Adoption Among Health Care Professionals: Qualitative Interview Study. Methods to Adjust for Confounding in Test-Negative Design COVID-19 Effectiveness Studies: Simulation Study. Multimodal Pain Recognition in Postoperative Patients: Machine Learning Approach. Designing the First Pregnancy Guaranteed Income Program in the United States: Qualitative Needs Assessment and Human-Centered Design to Develop the Abundant Birth Project.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1