Construction of a poor prognosis prediction and visualization system for intracranial aneurysm endovascular intervention treatment based on an improved machine learning model.

IF 2.7 3区 医学 Q2 CLINICAL NEUROLOGY Frontiers in Neurology Pub Date : 2025-01-08 eCollection Date: 2024-01-01 DOI:10.3389/fneur.2024.1482119
Chunyu Lei, Anhui Fu, Bin Li, Shengfu Zhou, Jun Liu, Yu Cao, Bo Zhou
{"title":"Construction of a poor prognosis prediction and visualization system for intracranial aneurysm endovascular intervention treatment based on an improved machine learning model.","authors":"Chunyu Lei, Anhui Fu, Bin Li, Shengfu Zhou, Jun Liu, Yu Cao, Bo Zhou","doi":"10.3389/fneur.2024.1482119","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To evaluate the clinical utility of improved machine learning models in predicting poor prognosis following endovascular intervention for intracranial aneurysms and to develop a corresponding visualization system.</p><p><strong>Methods: </strong>A total of 303 patients with intracranial aneurysms treated with endovascular intervention at four hospitals (FuShun County Zigong City People's Hospital, Nanchong Central Hospital, The Third People's Hospital of Yibin, The Sixth People's Hospital of Yibin) from January 2022 to September 2023 were selected. These patients were divided into a good prognosis group (<i>n</i> = 207) and a poor prognosis group (<i>n</i> = 96). An improved machine learning model was employed to analyze patient clinical data, aiding in the construction of a prediction model for poor prognosis in intracranial aneurysm endovascular intervention. This model simultaneously performed feature selection and weight determination. Logistic multivariate analysis was used to validate the selected features. Additionally, a visualization system was developed to automatically calculate the risk level of poor prognosis.</p><p><strong>Results: </strong>In the training set, the improved machine learning model achieved a maximum F1 score of 0.8633 and an area under the curve (AUC) of 0.9118. In the test set, the maximum F1 score was 0.7500, and the AUC was 0.8684. The model identified 10 key variables: age, hypertension, preoperative aneurysm rupture, Hunt-Hess grading, Fisher score, ASA grading, number of aneurysms, intraoperative use of etomidate, intubation upon leaving the operating room, and surgical time. These variables were consistent with the results of logistic multivariate analysis.</p><p><strong>Conclusions: </strong>The application of improved machine learning models for the analysis of patient clinical data can effectively predict the risk of poor prognosis following endovascular intervention for intracranial aneurysms at an early stage. This approach can assist in formulating intervention plans and ultimately improve patient outcomes.</p>","PeriodicalId":12575,"journal":{"name":"Frontiers in Neurology","volume":"15 ","pages":"1482119"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752991/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fneur.2024.1482119","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To evaluate the clinical utility of improved machine learning models in predicting poor prognosis following endovascular intervention for intracranial aneurysms and to develop a corresponding visualization system.

Methods: A total of 303 patients with intracranial aneurysms treated with endovascular intervention at four hospitals (FuShun County Zigong City People's Hospital, Nanchong Central Hospital, The Third People's Hospital of Yibin, The Sixth People's Hospital of Yibin) from January 2022 to September 2023 were selected. These patients were divided into a good prognosis group (n = 207) and a poor prognosis group (n = 96). An improved machine learning model was employed to analyze patient clinical data, aiding in the construction of a prediction model for poor prognosis in intracranial aneurysm endovascular intervention. This model simultaneously performed feature selection and weight determination. Logistic multivariate analysis was used to validate the selected features. Additionally, a visualization system was developed to automatically calculate the risk level of poor prognosis.

Results: In the training set, the improved machine learning model achieved a maximum F1 score of 0.8633 and an area under the curve (AUC) of 0.9118. In the test set, the maximum F1 score was 0.7500, and the AUC was 0.8684. The model identified 10 key variables: age, hypertension, preoperative aneurysm rupture, Hunt-Hess grading, Fisher score, ASA grading, number of aneurysms, intraoperative use of etomidate, intubation upon leaving the operating room, and surgical time. These variables were consistent with the results of logistic multivariate analysis.

Conclusions: The application of improved machine learning models for the analysis of patient clinical data can effectively predict the risk of poor prognosis following endovascular intervention for intracranial aneurysms at an early stage. This approach can assist in formulating intervention plans and ultimately improve patient outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Neurology
Frontiers in Neurology CLINICAL NEUROLOGYNEUROSCIENCES -NEUROSCIENCES
CiteScore
4.90
自引率
8.80%
发文量
2792
审稿时长
14 weeks
期刊介绍: The section Stroke aims to quickly and accurately publish important experimental, translational and clinical studies, and reviews that contribute to the knowledge of stroke, its causes, manifestations, diagnosis, and management.
期刊最新文献
Clinical efficacy of Tuina therapy combined with traditional Chinese exercises in the treatment of symptomatic lumbar disc herniation: a multicentre randomised controlled trial protocol. Evaluation of Siemens Healthineers' StrokeSegApp for automated diffusion and perfusion lesion segmentation in patients with ischemic stroke. Risk factors for perioperative cerebral infarction in moyamoya disease: a meta-analysis. Selective correlation of hippocampal volumes with WADA memory scores in mesial temporal sclerosis patients. Stem cell-derived exosome treatment for acute spinal cord injury: a systematic review and meta-analysis based on preclinical evidence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1