A meta-analysis of genome-wide association studies to identify candidate genes associated with feed efficiency traits in pigs.

IF 2.7 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Journal of animal science Pub Date : 2025-01-23 DOI:10.1093/jas/skaf010
Maria Rita Gonçalves da Silva, Renata Veroneze, Daniele B D Marques, Delvan A da Silva, Inaê I Machado, Luiz F Brito, Paulo S Lopes
{"title":"A meta-analysis of genome-wide association studies to identify candidate genes associated with feed efficiency traits in pigs.","authors":"Maria Rita Gonçalves da Silva, Renata Veroneze, Daniele B D Marques, Delvan A da Silva, Inaê I Machado, Luiz F Brito, Paulo S Lopes","doi":"10.1093/jas/skaf010","DOIUrl":null,"url":null,"abstract":"<p><p>Pig production is an agricultural sector of great economic and social relevance to Brazil and global markets. Feed efficiency traits directly influence the sustainability of pig production due to the economic impact of feed costs on the production system and the environmental footprint of the industry. Therefore, breeding for improved feed efficiency has been a target of worldwide pig breeding programs. Genome-wide association studies (GWAS) enable the assessment of the genetic background of complex traits, which contributes to a better understanding of the biological mechanisms regulating their phenotypic expression. In this context, the primary objective of this study was to identify and validate genomic regions and candidate genes associated with feed conversion ratio (FCR) and residual feed intake (RFI) in pigs based on a comprehensive systematic review and meta-analysis of GWAS. The METAL software was used to implement the meta-analysis and the Bonferroni multiple testing correction considering a significance threshold of 0.05. The significant single nucleotide polymorphisms (SNPs) in the meta-analysis were used to identify candidate genes, followed by a functional genomic enrichment analysis. The systematic review identified 13 studies, of which 7 evaluated FCR, 3 evaluated RFI, and 3 studies investigated both traits, with 160 and 96 SNPs identified for FCR and RFI, respectively. After the meta-analysis, 145 markers were significantly associated with FCR and 90 with RFI. The gene annotation process resulted in 105 and 114 genes for FCR and RFI, respectively. The enrichment analysis for FCR resulted in 16 significant gene ontology (GO) terms, while six terms were identified for RFI. The main GO terms were actin cytoskeleton (GO_BP:0030036), membrane (GO_CC:0016020), integral components of the peroxisomal membrane (GO_CC:0005779), and carbohydrate binding (GO_MF:0030246). The main candidate genes identified were MED18, PHACTR4, ABCC2, TRHDE, FRS2, FAR2 and FIS1 for FCR, and ADGRL2, ASGR1, ASGR2, and MAN2B1 for RFI. These findings contribute to a better understanding of the genetic mechanisms associated with feed efficiency traits in pigs, providing a foundation for future improvements in pig breeding programs.</p>","PeriodicalId":14895,"journal":{"name":"Journal of animal science","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of animal science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jas/skaf010","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Pig production is an agricultural sector of great economic and social relevance to Brazil and global markets. Feed efficiency traits directly influence the sustainability of pig production due to the economic impact of feed costs on the production system and the environmental footprint of the industry. Therefore, breeding for improved feed efficiency has been a target of worldwide pig breeding programs. Genome-wide association studies (GWAS) enable the assessment of the genetic background of complex traits, which contributes to a better understanding of the biological mechanisms regulating their phenotypic expression. In this context, the primary objective of this study was to identify and validate genomic regions and candidate genes associated with feed conversion ratio (FCR) and residual feed intake (RFI) in pigs based on a comprehensive systematic review and meta-analysis of GWAS. The METAL software was used to implement the meta-analysis and the Bonferroni multiple testing correction considering a significance threshold of 0.05. The significant single nucleotide polymorphisms (SNPs) in the meta-analysis were used to identify candidate genes, followed by a functional genomic enrichment analysis. The systematic review identified 13 studies, of which 7 evaluated FCR, 3 evaluated RFI, and 3 studies investigated both traits, with 160 and 96 SNPs identified for FCR and RFI, respectively. After the meta-analysis, 145 markers were significantly associated with FCR and 90 with RFI. The gene annotation process resulted in 105 and 114 genes for FCR and RFI, respectively. The enrichment analysis for FCR resulted in 16 significant gene ontology (GO) terms, while six terms were identified for RFI. The main GO terms were actin cytoskeleton (GO_BP:0030036), membrane (GO_CC:0016020), integral components of the peroxisomal membrane (GO_CC:0005779), and carbohydrate binding (GO_MF:0030246). The main candidate genes identified were MED18, PHACTR4, ABCC2, TRHDE, FRS2, FAR2 and FIS1 for FCR, and ADGRL2, ASGR1, ASGR2, and MAN2B1 for RFI. These findings contribute to a better understanding of the genetic mechanisms associated with feed efficiency traits in pigs, providing a foundation for future improvements in pig breeding programs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of animal science
Journal of animal science 农林科学-奶制品与动物科学
CiteScore
4.80
自引率
12.10%
发文量
1589
审稿时长
3 months
期刊介绍: The Journal of Animal Science (JAS) is the premier journal for animal science and serves as the leading source of new knowledge and perspective in this area. JAS publishes more than 500 fully reviewed research articles, invited reviews, technical notes, and letters to the editor each year. Articles published in JAS encompass a broad range of research topics in animal production and fundamental aspects of genetics, nutrition, physiology, and preparation and utilization of animal products. Articles typically report research with beef cattle, companion animals, goats, horses, pigs, and sheep; however, studies involving other farm animals, aquatic and wildlife species, and laboratory animal species that address fundamental questions related to livestock and companion animal biology will be considered for publication.
期刊最新文献
HSF1 and CPSF1 affect milk fat and protein synthesis by regulating the AKT/mTOR signaling pathway Inbreeding depression for litter size in two mice lines under divergent selection for environmental birth weight variability using genomic data Genetic Evaluation of Longevity in Australian Angus cattle Using Random Regression Models Effect of Luteolin on cadmium-inhibited bone growth via suppressing osteoclastogenesis in laying chickens Acute enhanced liquid aspirin administration improves performance and intestinal function in nursery pigs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1