Joe-Menwer Tabet, Fernando Bussiman, Vivian Breen, Ignacy Misztal, Daniela Lourenco
Combining breeding populations that have diverged at some point is a conventional practice, particularly in the poultry industry, where generation intervals are short and genetic evaluations should be frequently available. This study aimed to assess the feasibility of combining large, distantly genetically connected broiler populations into a single genomic evaluation within the single-step GBLUP framework. The pedigree data for broiler lines 1 and 2 consisted of 428,790 and 477,488 animals, being 156,088 and 186,387 genotyped, respectively. Phenotypic data for Body weight (kg), Carcass Yield (%), Mortality (1-2), and Feet Health (1-7) were collected for 397,974 animals in line 1 and 458,881 in line 2. A four-trait model was employed for the analyses, and genetic differences between the populations were addressed through different approaches: introducing an additional fixed effect accounting for the line of origin (M2) or making each fixed effect origin-specific (M3). Those models were compared against a conventional model (M1) that did not account for animal origin in the evaluation. Unknown parent groups (UPG) and Metafounders (MF) were fit to account for the genetic differences in M1, M2, and M3; they were set based on the animal's line of origin and sex. Accuracy, bias, and dispersion were used to assess the performances of the models using the Linear Regression method. Validations were performed separately within individual lines and collectively after combining the two lines to better assess the advantages of combining the two populations. Overall, the accuracy increased when the two populations were combined compared to the accuracies obtained from evaluating each line individually. Notably, there were no apparent differences among the models regarding accuracy and dispersion. Regarding bias, using models M2 or M3 with UPG yielding the least biased estimates in the combined evaluation. Thus, when combining different populations into a single genomic evaluation, accounting for the genetic and non-genetic differences among the lines ensures accurate and less biased predictions.
{"title":"Combining large broiler populations into a single genomic evaluation: Dealing with genetic divergence1.","authors":"Joe-Menwer Tabet, Fernando Bussiman, Vivian Breen, Ignacy Misztal, Daniela Lourenco","doi":"10.1093/jas/skae360","DOIUrl":"https://doi.org/10.1093/jas/skae360","url":null,"abstract":"<p><p>Combining breeding populations that have diverged at some point is a conventional practice, particularly in the poultry industry, where generation intervals are short and genetic evaluations should be frequently available. This study aimed to assess the feasibility of combining large, distantly genetically connected broiler populations into a single genomic evaluation within the single-step GBLUP framework. The pedigree data for broiler lines 1 and 2 consisted of 428,790 and 477,488 animals, being 156,088 and 186,387 genotyped, respectively. Phenotypic data for Body weight (kg), Carcass Yield (%), Mortality (1-2), and Feet Health (1-7) were collected for 397,974 animals in line 1 and 458,881 in line 2. A four-trait model was employed for the analyses, and genetic differences between the populations were addressed through different approaches: introducing an additional fixed effect accounting for the line of origin (M2) or making each fixed effect origin-specific (M3). Those models were compared against a conventional model (M1) that did not account for animal origin in the evaluation. Unknown parent groups (UPG) and Metafounders (MF) were fit to account for the genetic differences in M1, M2, and M3; they were set based on the animal's line of origin and sex. Accuracy, bias, and dispersion were used to assess the performances of the models using the Linear Regression method. Validations were performed separately within individual lines and collectively after combining the two lines to better assess the advantages of combining the two populations. Overall, the accuracy increased when the two populations were combined compared to the accuracies obtained from evaluating each line individually. Notably, there were no apparent differences among the models regarding accuracy and dispersion. Regarding bias, using models M2 or M3 with UPG yielding the least biased estimates in the combined evaluation. Thus, when combining different populations into a single genomic evaluation, accounting for the genetic and non-genetic differences among the lines ensures accurate and less biased predictions.</p>","PeriodicalId":14895,"journal":{"name":"Journal of animal science","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luis F B Pinto, Ronald M Lewis, Artur O Rocha, Brad A Freking, Tom W Murphy, Carrie S Wilson, Sara M Nilson, Joan M Burke, Luiz F Brito
The length of ewe productive life (LPL), defined as the number of days between the first and last lambing, is a key indicator of ewe longevity and is directly related to the sustainability of the sheep industry. Therefore, the primary objective of this study was to investigate systematic effects influencing LPL in Katahdin sheep. The LPL of 10,474 Katahdin ewes (69.5% with uncensored and 30.5% with right-censored observations) born between 1992 and 2021 in 58 flocks located across the United States were analyzed. The Kaplan-Meier (K-M) and Cox Proportional Hazard (Cox PH) methods were used to estimate survival probability. Four Cox PH models were evaluated. Model 1 included contemporary group (CG; flock-year-season of ewe birth) as a random effect and the ewe's dam's age (EDA), ewe's own birth-rearing type (BR; 1/1, 2/1, 2/2, 3/2, 3/3, with the digit-3 including lamb counts ≥3), and age at first lambing (AFL) as fixed effects. Models 2 to 4 were an extension of model 1. Model 2 also included average lamb birth weight (ABW) per ewe lifetime, while model 3 included average lamb weaning weight (AWW) per ewe lifetime. Both ABW and AWW were fitted as fixed effects. Model 4 fitted all previous effects together. The factors CG, BR, ABW, and AWW affected LPL (P < 0.05) in all models in which these effects were fitted. The EDA effect only influenced LPL (P < 0.05) in model 1, while AFL had no effect (P > 0.05) in any model. The median LPL ranged from approximately 2 to 3 yr, depending on the risk factors analyzed. In general, Katahdin ewes themselves born in multiple litters, and that produced lambs weighing ~5 kg at lambing and 20 to 25 kg at weaning (over their lifespan) had better survival probability. Although the LPL of Katahdin sheep is relatively low, it appears to be a consequence of voluntary culling due to its association with both ABW and AWW. Future studies should quantify the rate of involuntary culling in Katahdin ewes to identify whether longevity indicator traits should be included in more comprehensive breeding objectives.
{"title":"Factors affecting the length of productive life in U.S. Katahdin ewes.","authors":"Luis F B Pinto, Ronald M Lewis, Artur O Rocha, Brad A Freking, Tom W Murphy, Carrie S Wilson, Sara M Nilson, Joan M Burke, Luiz F Brito","doi":"10.1093/jas/skae361","DOIUrl":"https://doi.org/10.1093/jas/skae361","url":null,"abstract":"<p><p>The length of ewe productive life (LPL), defined as the number of days between the first and last lambing, is a key indicator of ewe longevity and is directly related to the sustainability of the sheep industry. Therefore, the primary objective of this study was to investigate systematic effects influencing LPL in Katahdin sheep. The LPL of 10,474 Katahdin ewes (69.5% with uncensored and 30.5% with right-censored observations) born between 1992 and 2021 in 58 flocks located across the United States were analyzed. The Kaplan-Meier (K-M) and Cox Proportional Hazard (Cox PH) methods were used to estimate survival probability. Four Cox PH models were evaluated. Model 1 included contemporary group (CG; flock-year-season of ewe birth) as a random effect and the ewe's dam's age (EDA), ewe's own birth-rearing type (BR; 1/1, 2/1, 2/2, 3/2, 3/3, with the digit-3 including lamb counts ≥3), and age at first lambing (AFL) as fixed effects. Models 2 to 4 were an extension of model 1. Model 2 also included average lamb birth weight (ABW) per ewe lifetime, while model 3 included average lamb weaning weight (AWW) per ewe lifetime. Both ABW and AWW were fitted as fixed effects. Model 4 fitted all previous effects together. The factors CG, BR, ABW, and AWW affected LPL (P < 0.05) in all models in which these effects were fitted. The EDA effect only influenced LPL (P < 0.05) in model 1, while AFL had no effect (P > 0.05) in any model. The median LPL ranged from approximately 2 to 3 yr, depending on the risk factors analyzed. In general, Katahdin ewes themselves born in multiple litters, and that produced lambs weighing ~5 kg at lambing and 20 to 25 kg at weaning (over their lifespan) had better survival probability. Although the LPL of Katahdin sheep is relatively low, it appears to be a consequence of voluntary culling due to its association with both ABW and AWW. Future studies should quantify the rate of involuntary culling in Katahdin ewes to identify whether longevity indicator traits should be included in more comprehensive breeding objectives.</p>","PeriodicalId":14895,"journal":{"name":"Journal of animal science","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wilmer Cuervo, Camila Gomez, Federico Tarnonsky, Ignacio Fernandez-Marenchino, Federico Podversich, Araceli Maderal, Tessa M Schulmeister, Juan de J Vargas, Nicolas DiLorenzo
By 2050, the U.S. beef industry must produce an extra 40 million tons of beef to satisfy the global demand. Such an increase in inventory will undoubtedly enhance methane (CH4) production from livestock, which should be reduced by over 20%. The addition of plant secondary metabolites, such as anacardic acid present in cashew nutshell extract (CNSE), has shown promising results in reducing CH4 yield, although its effects seemed to be diet dependent. This study evaluated the addition of CNSE to a high-grain diet (85:15 Grain: forage) on in vivo CH4 emissions, nutrients digestibility, performance, feeding behavior, and ruminal fermentation parameters of beef steers. Sixteen Angus crossbred steers [599 ± 40 kg of bodyweight (BW)] and six ruminally cannulated crossbred steers (490 ± 51 kg of BW) were utilized in a crossover design with 2 experimental periods of 56 d each, composed by 14 d of adaptation, 35 d of measurement, and 7 d of washout. Following adaptation, steers were sorted by BW, and assigned to receive no additive (CON) or CNSE at 5 g/steer/d. Data were analyzed using the MIXED procedure of SAS. Inclusion of CNSE increased (P < 0.05) propionate concentration and molar proportion (MP; mol/100 mol), tended to decrease acetate MP (P = 0.10), reduced the acetate: propionate (A:P) ratio (P = 0.05), and MP of branched chain volatile fatty acids (P < 0.01). Neither in vitro organic matter digestibility nor in vitro CH4 yield were affected by CNSE inclusion (P > 0.05). Steers receiving CNSE exhibited greater (P < 0.05) final BW, dry matter intake (DMI), and average daily gain (ADG) but lesser (P < 0.05) in vivo CH4 emission rate (g/d), yield (g/kg of DMI), and intensity (g/kg of ADG). Meal length, bunk visit duration, and apparent total tract digestibility of DM increased (P < 0.05) after CNSE addition. Considering CNSE-supplemented steers spent more time in the feedbunk and exhibited higher DMI, CH4 mitigation was unlikely associated with intake reduction. The addition of CNSE to a high-grain diet in beef steers demonstrated significant improvements in animal performance and reduced CH4 emissions, as the result of shifts in ruminal fermentation patterns, favoring propionate instead acetate concentration, leading to a reduction in the A:P ratio. CNSE shows promise as a strategy to enhance beef industry sustainability.
{"title":"Effects of cashew nutshell extract inclusion into a high-grain finishing diet on methane emissions, nutrient digestibility, and ruminal fermentation in beef steers.","authors":"Wilmer Cuervo, Camila Gomez, Federico Tarnonsky, Ignacio Fernandez-Marenchino, Federico Podversich, Araceli Maderal, Tessa M Schulmeister, Juan de J Vargas, Nicolas DiLorenzo","doi":"10.1093/jas/skae359","DOIUrl":"https://doi.org/10.1093/jas/skae359","url":null,"abstract":"<p><p>By 2050, the U.S. beef industry must produce an extra 40 million tons of beef to satisfy the global demand. Such an increase in inventory will undoubtedly enhance methane (CH4) production from livestock, which should be reduced by over 20%. The addition of plant secondary metabolites, such as anacardic acid present in cashew nutshell extract (CNSE), has shown promising results in reducing CH4 yield, although its effects seemed to be diet dependent. This study evaluated the addition of CNSE to a high-grain diet (85:15 Grain: forage) on in vivo CH4 emissions, nutrients digestibility, performance, feeding behavior, and ruminal fermentation parameters of beef steers. Sixteen Angus crossbred steers [599 ± 40 kg of bodyweight (BW)] and six ruminally cannulated crossbred steers (490 ± 51 kg of BW) were utilized in a crossover design with 2 experimental periods of 56 d each, composed by 14 d of adaptation, 35 d of measurement, and 7 d of washout. Following adaptation, steers were sorted by BW, and assigned to receive no additive (CON) or CNSE at 5 g/steer/d. Data were analyzed using the MIXED procedure of SAS. Inclusion of CNSE increased (P < 0.05) propionate concentration and molar proportion (MP; mol/100 mol), tended to decrease acetate MP (P = 0.10), reduced the acetate: propionate (A:P) ratio (P = 0.05), and MP of branched chain volatile fatty acids (P < 0.01). Neither in vitro organic matter digestibility nor in vitro CH4 yield were affected by CNSE inclusion (P > 0.05). Steers receiving CNSE exhibited greater (P < 0.05) final BW, dry matter intake (DMI), and average daily gain (ADG) but lesser (P < 0.05) in vivo CH4 emission rate (g/d), yield (g/kg of DMI), and intensity (g/kg of ADG). Meal length, bunk visit duration, and apparent total tract digestibility of DM increased (P < 0.05) after CNSE addition. Considering CNSE-supplemented steers spent more time in the feedbunk and exhibited higher DMI, CH4 mitigation was unlikely associated with intake reduction. The addition of CNSE to a high-grain diet in beef steers demonstrated significant improvements in animal performance and reduced CH4 emissions, as the result of shifts in ruminal fermentation patterns, favoring propionate instead acetate concentration, leading to a reduction in the A:P ratio. CNSE shows promise as a strategy to enhance beef industry sustainability.</p>","PeriodicalId":14895,"journal":{"name":"Journal of animal science","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142686727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lydia R Burnett, Nick R Hebdon, Pete A Stevens, Monica D Moljo, Lindsay D Waldrop, Lauryn E DeGreeff
Dogs are utilized in forensic science for their extensive scent detection capabilities. They are often considered the “gold standard” in field detection for targets such as illicit drugs and explosives. Despite their prevalence in the field, relatively little is known about how dogs interact with and transport volatile organic compounds through their olfactory system. In this study, two groups of dogs were utilized – Sport detection dogs (n=19) that participate in the National Association of Canine Scent Work and have achieved advanced standing through training and successful search competitions and law enforcement explosive detection dogs (n=8) which were included for comparison. Both groups were presented with two target odorants having differing molecular properties, 2-ethyl-1-hexanol and ammonia, two non-target odorants, 1-bromooctane and methyl benzoate, and a negative control. Canines were tested prior to experience with the target odorants, when all odorants were novel, after some brief training with the target odorants, and after longer training time with the target odorants. The non-target odorants were never used in training. Sniffing was measured using flow sensors embedded in a wall immediately in front of the odorants held in a closed cylinder. Sensor data was used to calculate sniff flow rate, frequency (sniffs per seconds) and volume. Results indicated no difference in sniffing dynamics between target odorants; however, sniffing frequency increased significantly with increased experience with the target odorants (Wilcoxon rank sum exact test, W= 148, p=6×10-5). Sniff volume and flow rate showed a positive correlation to body mass for all sport detection dogs (slope = 2.71, F(1,17)= 9.48, p= 0.007, R2= 0.32), though the R2 was low, indicating other factors at play. Law enforcement detection dogs were shown to take in significantly higher mean total sniff volumes (Wilcoxon rank sum exact test: W= 7, p=10-4) and volume flow rates (Wilcoxon rank sum exact test: W= 5, p=6×10-5) compared to the sport detection dogs, but the sniff frequency remained similar for both groups.
{"title":"Dog sniffing biomechanic responses in an odor detection test of odorants with differing physical properties","authors":"Lydia R Burnett, Nick R Hebdon, Pete A Stevens, Monica D Moljo, Lindsay D Waldrop, Lauryn E DeGreeff","doi":"10.1093/jas/skae353","DOIUrl":"https://doi.org/10.1093/jas/skae353","url":null,"abstract":"Dogs are utilized in forensic science for their extensive scent detection capabilities. They are often considered the “gold standard” in field detection for targets such as illicit drugs and explosives. Despite their prevalence in the field, relatively little is known about how dogs interact with and transport volatile organic compounds through their olfactory system. In this study, two groups of dogs were utilized – Sport detection dogs (n=19) that participate in the National Association of Canine Scent Work and have achieved advanced standing through training and successful search competitions and law enforcement explosive detection dogs (n=8) which were included for comparison. Both groups were presented with two target odorants having differing molecular properties, 2-ethyl-1-hexanol and ammonia, two non-target odorants, 1-bromooctane and methyl benzoate, and a negative control. Canines were tested prior to experience with the target odorants, when all odorants were novel, after some brief training with the target odorants, and after longer training time with the target odorants. The non-target odorants were never used in training. Sniffing was measured using flow sensors embedded in a wall immediately in front of the odorants held in a closed cylinder. Sensor data was used to calculate sniff flow rate, frequency (sniffs per seconds) and volume. Results indicated no difference in sniffing dynamics between target odorants; however, sniffing frequency increased significantly with increased experience with the target odorants (Wilcoxon rank sum exact test, W= 148, p=6×10-5). Sniff volume and flow rate showed a positive correlation to body mass for all sport detection dogs (slope = 2.71, F(1,17)= 9.48, p= 0.007, R2= 0.32), though the R2 was low, indicating other factors at play. Law enforcement detection dogs were shown to take in significantly higher mean total sniff volumes (Wilcoxon rank sum exact test: W= 7, p=10-4) and volume flow rates (Wilcoxon rank sum exact test: W= 5, p=6×10-5) compared to the sport detection dogs, but the sniff frequency remained similar for both groups.","PeriodicalId":14895,"journal":{"name":"Journal of animal science","volume":"127 16 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenglong Li, Junjie Xu, Yanfeng Zhang, Yanling Ding, Xiaonan Zhou, Zonghua Su, Chang Qu, Jiahao Liang, Yurun Han, Dingxiang Wang, Yuangang Shi, Cong-Jun Li, George E Liu, Xiaolong Kang
Intramuscular fat content is one of the most important factors affecting beef quality. However, the role of alternate polyadenylation (APA) in intramuscular fat deposition remains unclear. We compared APA events in muscle samples from high and low intramuscular fat (IMF) cattle, based on RNA-seq data. A total of 363 significant APAs were identified. Notably, the number of shortened 3'UTR events exceeded the number of lengthened 3'UTR events, and genes associated with shortened 3'UTR events were enriched in fatty acid metabolism-related pathways. Most APA events had alternative 3'UTR (aUTR) lengths of 200-300 bp. As the 3'UTR lengthened, the aUTR also lengthened (R2 = 0.79). These findings indicate that genes with longer 3'UTRs are more likely to be regulated by APA in the muscle of cattle with high IMF. To determine whether the identified APA events drove alterations in the expression of fat deposition-related genes, we analyzed the relationship between APA events and differentially expressed genes and identified several genes critical for fat deposition (e.g., PFKL and SLC1A5). Since miRNAs usually bind to the 3'UTR region of protein-coding genes and affect gene expression, we constructed an miRNA-APA network to detect several key miRNAs that may regulate fat deposition. We identified 10 important miRNAs that affect changes in IMF content, which may be gained (gained miRNA-binding sites) or lost (lost miRNA-binding sites) owing to 187 differential APA events. Our study characterized the APA profiles of cattle with high and low intramuscular fat content and provided further insights into the relationship between APA, miRNA, and fat deposition.
肌肉内脂肪含量是影响牛肉品质的最重要因素之一。然而,交替多聚腺苷酸化(APA)在肌肉内脂肪沉积中的作用仍不清楚。我们根据 RNA-seq 数据比较了高肌内脂肪(IMF)牛和低肌内脂肪(IMF)牛肌肉样本中的 APA 事件。共发现了 363 个重要的 APA。值得注意的是,3'UTR缩短事件的数量超过了3'UTR延长事件的数量,与3'UTR缩短事件相关的基因富集在脂肪酸代谢相关通路中。大多数 APA 事件的备选 3'UTR (aUTR) 长度为 200-300 bp。随着 3'UTR 的延长,aUTR 也在延长(R2 = 0.79)。这些发现表明,在高IMF牛的肌肉中,3'UTR较长的基因更有可能受到APA的调控。为了确定已确定的 APA 事件是否驱动了脂肪沉积相关基因表达的改变,我们分析了 APA 事件与差异表达基因之间的关系,并确定了几个对脂肪沉积至关重要的基因(如 PFKL 和 SLC1A5)。由于miRNA通常结合到蛋白编码基因的3'UTR区域并影响基因表达,我们构建了一个miRNA-APA网络,以检测可能调控脂肪沉积的几个关键miRNA。我们发现了 10 个影响 IMF 含量变化的重要 miRNA,它们可能由于 187 个不同的 APA 事件而获得(获得 miRNA 结合位点)或失去(失去 miRNA 结合位点)。我们的研究描述了肌肉内脂肪含量高和低的牛的 APA 图谱,并进一步揭示了 APA、miRNA 和脂肪沉积之间的关系。
{"title":"Alternative polyadenylation landscape of longissimus dorsi muscle with high and low intramuscular fat content in cattle.","authors":"Chenglong Li, Junjie Xu, Yanfeng Zhang, Yanling Ding, Xiaonan Zhou, Zonghua Su, Chang Qu, Jiahao Liang, Yurun Han, Dingxiang Wang, Yuangang Shi, Cong-Jun Li, George E Liu, Xiaolong Kang","doi":"10.1093/jas/skae357","DOIUrl":"https://doi.org/10.1093/jas/skae357","url":null,"abstract":"<p><p>Intramuscular fat content is one of the most important factors affecting beef quality. However, the role of alternate polyadenylation (APA) in intramuscular fat deposition remains unclear. We compared APA events in muscle samples from high and low intramuscular fat (IMF) cattle, based on RNA-seq data. A total of 363 significant APAs were identified. Notably, the number of shortened 3'UTR events exceeded the number of lengthened 3'UTR events, and genes associated with shortened 3'UTR events were enriched in fatty acid metabolism-related pathways. Most APA events had alternative 3'UTR (aUTR) lengths of 200-300 bp. As the 3'UTR lengthened, the aUTR also lengthened (R2 = 0.79). These findings indicate that genes with longer 3'UTRs are more likely to be regulated by APA in the muscle of cattle with high IMF. To determine whether the identified APA events drove alterations in the expression of fat deposition-related genes, we analyzed the relationship between APA events and differentially expressed genes and identified several genes critical for fat deposition (e.g., PFKL and SLC1A5). Since miRNAs usually bind to the 3'UTR region of protein-coding genes and affect gene expression, we constructed an miRNA-APA network to detect several key miRNAs that may regulate fat deposition. We identified 10 important miRNAs that affect changes in IMF content, which may be gained (gained miRNA-binding sites) or lost (lost miRNA-binding sites) owing to 187 differential APA events. Our study characterized the APA profiles of cattle with high and low intramuscular fat content and provided further insights into the relationship between APA, miRNA, and fat deposition.</p>","PeriodicalId":14895,"journal":{"name":"Journal of animal science","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Logan G Johnson, Chaoyu Zhai, Kenneth J Prusa, Mahesh N Nair, Jessica E Prenni, Jacqueline M Chaparro, Elisabeth Huff-Lonergan, Steven M Lonergan
The ability to predict fresh pork tenderness and quality is hindered by an incomplete understanding of molecular factors that influence these complex traits. It is hypothesized that a comprehensive description of the metabolomic and proteomic phenotypes associated with variation in pork tenderness and quality will enhance the understanding and inform the development of rapid and non-destructive methods to measure pork quality. The objective of this investigation was to examine the proteomic and metabolomic profiles of approximately 2-week aged pork chops categorized across instrumental tenderness groups. One hundred pork loin chops from a larger sample (N=120) were assigned to one of four categories (n=25) based on instrumental star probe value. (Category A, x = 4.23 kg, 3.43-4.55 kg; Category B, x = 4.79 kg, 4.66-5.00 kg; Category C, x = 5.43 kg, 5.20-5.64 kg; Category D, x = 6.21 kg, 5.70-7.41 kg;). Soluble protein from approximately two week aged pork loin was prepared using a low ionic strength buffer. Proteins were digested with trypsin, labeled with 11-plex isobaric TMT reagents, and identified and quantified using a Q-Exactive Mass Spectrometer. Metabolites were extracted in 80 % methanol from lyophilized and homogenized tissue samples. Derivatized metabolites were identified and quantified using GC-MS. Between Categories A and D, 84 proteins and 22 metabolites were differentially abundant (Adjusted P < 0.05). Fewer differences were detected in comparison between categories with less divergent tenderness measures. The molecular phenotype of the more tender (Category A) aged chops is consistent with a slower and less extended pH decline and markedly less abundance of glycolytic metabolites. The presence and greater abundance of proteins in the low ionic strength extract, including desmin, filamin C, calsequestrin, and fumarate hydratase, indicates a greater disruption of sarcoplasmic reticulum and mitochondrial membranes and the degradation and release of structural proteins from the continuous connections of myofibrils and the sarcolemma.
{"title":"Proteomic and metabolomic profiling of aged pork loin chops reveals molecular phenotypes linked to pork tenderness.","authors":"Logan G Johnson, Chaoyu Zhai, Kenneth J Prusa, Mahesh N Nair, Jessica E Prenni, Jacqueline M Chaparro, Elisabeth Huff-Lonergan, Steven M Lonergan","doi":"10.1093/jas/skae355","DOIUrl":"https://doi.org/10.1093/jas/skae355","url":null,"abstract":"<p><p>The ability to predict fresh pork tenderness and quality is hindered by an incomplete understanding of molecular factors that influence these complex traits. It is hypothesized that a comprehensive description of the metabolomic and proteomic phenotypes associated with variation in pork tenderness and quality will enhance the understanding and inform the development of rapid and non-destructive methods to measure pork quality. The objective of this investigation was to examine the proteomic and metabolomic profiles of approximately 2-week aged pork chops categorized across instrumental tenderness groups. One hundred pork loin chops from a larger sample (N=120) were assigned to one of four categories (n=25) based on instrumental star probe value. (Category A, x = 4.23 kg, 3.43-4.55 kg; Category B, x = 4.79 kg, 4.66-5.00 kg; Category C, x = 5.43 kg, 5.20-5.64 kg; Category D, x = 6.21 kg, 5.70-7.41 kg;). Soluble protein from approximately two week aged pork loin was prepared using a low ionic strength buffer. Proteins were digested with trypsin, labeled with 11-plex isobaric TMT reagents, and identified and quantified using a Q-Exactive Mass Spectrometer. Metabolites were extracted in 80 % methanol from lyophilized and homogenized tissue samples. Derivatized metabolites were identified and quantified using GC-MS. Between Categories A and D, 84 proteins and 22 metabolites were differentially abundant (Adjusted P < 0.05). Fewer differences were detected in comparison between categories with less divergent tenderness measures. The molecular phenotype of the more tender (Category A) aged chops is consistent with a slower and less extended pH decline and markedly less abundance of glycolytic metabolites. The presence and greater abundance of proteins in the low ionic strength extract, including desmin, filamin C, calsequestrin, and fumarate hydratase, indicates a greater disruption of sarcoplasmic reticulum and mitochondrial membranes and the degradation and release of structural proteins from the continuous connections of myofibrils and the sarcolemma.</p>","PeriodicalId":14895,"journal":{"name":"Journal of animal science","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simone Callegaro, Francesco Tiezzi, Christian Maltecca, Maria Chiara Fabbri, Riccardo Bozzi
This study aimed to estimate the genetic parameters of Stay-ability (STAY) at different calvings using a single-step genomic best linear unbiased prediction (ssGBLUP) approach, comparing Gaussian-linear and threshold models in Italian Charolais and Limousine beef cattle. It also examined the genetic relationship between STAY and other traits to identify potential indicators of longevity and assessed the impact of STAY selection on economically important traits. Stay-ability, a key trait for farm profitability, is defined as the probability of a cow surviving and remaining productive in the herd until a determined age. We evaluated STAY from the second to third calving and subsequent intervals (e.g., STAY23, STAY78), along with two fertility traits and several conformation traits. Data included 47,362 Limousine cows and 9,174 Charolais cows from 2,471 and 1,774 herds, respectively, born between 1977 and 2023. Analyses were performed fitting univariate threshold and Gaussian-linear animal models to estimate genetic parameters for STAY traits (STAY2 to STAY8) using ssGBLUP. Also, bivariate models were used to estimate genetic correlations between STAY and fertility and conformation traits. Heritabilities for STAY ranged from 0.13 to 0.11 and from 0.21 to 0.14 for Limousine, and from 0.14 to 0.11 and from 0.21 to 0.19 for Charolais, using Gaussian-linear and threshold models, respectively. Significant re-ranking of genotyped sires based on STAY traits was observed, particularly for more distant calvings (STAY8) compared to earlier ones (STAY3), indicating that STAY traits are genetically distinct. Genetic correlations were positive between STAY and conformation traits for Limousine. In Charolais, many traits were uncorrelated, but some conformation traits showed positive correlations, except for rump convexity, which had negative correlations with STAY. In conclusion, the heritability estimates of STAY suggests that genetic improvement for longevity in Limousine and Charolais herds is feasible. Selecting sires with consistently high genomic breeding values for STAY across early and late calvings highlights the importance of long-term longevity. Genetic correlations indicate that selection based on conformation traits could enhance herd survival by improving cow resilience for the Limousine. Instead for the Charolais some conformation traits showed positive correlations with STAY, while rump convexity had negative association, potentially affecting longevity.
{"title":"Genetic parameters of functional longevity and associated traits in Italian Charolais and Limousine breeds.","authors":"Simone Callegaro, Francesco Tiezzi, Christian Maltecca, Maria Chiara Fabbri, Riccardo Bozzi","doi":"10.1093/jas/skae354","DOIUrl":"10.1093/jas/skae354","url":null,"abstract":"<p><p>This study aimed to estimate the genetic parameters of Stay-ability (STAY) at different calvings using a single-step genomic best linear unbiased prediction (ssGBLUP) approach, comparing Gaussian-linear and threshold models in Italian Charolais and Limousine beef cattle. It also examined the genetic relationship between STAY and other traits to identify potential indicators of longevity and assessed the impact of STAY selection on economically important traits. Stay-ability, a key trait for farm profitability, is defined as the probability of a cow surviving and remaining productive in the herd until a determined age. We evaluated STAY from the second to third calving and subsequent intervals (e.g., STAY23, STAY78), along with two fertility traits and several conformation traits. Data included 47,362 Limousine cows and 9,174 Charolais cows from 2,471 and 1,774 herds, respectively, born between 1977 and 2023. Analyses were performed fitting univariate threshold and Gaussian-linear animal models to estimate genetic parameters for STAY traits (STAY2 to STAY8) using ssGBLUP. Also, bivariate models were used to estimate genetic correlations between STAY and fertility and conformation traits. Heritabilities for STAY ranged from 0.13 to 0.11 and from 0.21 to 0.14 for Limousine, and from 0.14 to 0.11 and from 0.21 to 0.19 for Charolais, using Gaussian-linear and threshold models, respectively. Significant re-ranking of genotyped sires based on STAY traits was observed, particularly for more distant calvings (STAY8) compared to earlier ones (STAY3), indicating that STAY traits are genetically distinct. Genetic correlations were positive between STAY and conformation traits for Limousine. In Charolais, many traits were uncorrelated, but some conformation traits showed positive correlations, except for rump convexity, which had negative correlations with STAY. In conclusion, the heritability estimates of STAY suggests that genetic improvement for longevity in Limousine and Charolais herds is feasible. Selecting sires with consistently high genomic breeding values for STAY across early and late calvings highlights the importance of long-term longevity. Genetic correlations indicate that selection based on conformation traits could enhance herd survival by improving cow resilience for the Limousine. Instead for the Charolais some conformation traits showed positive correlations with STAY, while rump convexity had negative association, potentially affecting longevity.</p>","PeriodicalId":14895,"journal":{"name":"Journal of animal science","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taurine, biosynthesized from methionine or cysteine in the liver, plays a crucial regulatory role in bile acid conjugation, antioxidant effects, and glucose and cholesterol metabolism. This may influence the metabolic changes associated with fat accumulation in beef cattle. However, the physiological role of taurine in this species has not been fully elucidated. In this study, we explored the physiological role of taurine in Japanese Black steers (Bos taurus) in different phases during the fattening period. To examine the correlation among plasma taurine concentrations, various physiological parameters, and genes related to taurine synthesis in the liver, we used biopsied liver tissues, blood samples, and rumen fluids collected from 21 steers at three different stages, i.e., early (T1; 13 months of age), middle (T2; 20 months of age), and late (T3; 28 months of age) phases. Additionally, to investigate the regulatory mechanisms underlying the expression profile of taurine synthesis genes, primary bovine hepatocytes obtained from 4-week-old Holstein calves were treated with palmitate, oleate, acetate, propionate, or β-hydroxybutyrate (BHBA). Plasma taurine and cholesterol concentrations significantly (P < 0.001) increased in the T2 phase, which is potentially attributable to increased energy intake and assimilation induced by increased intake of concentrated feed. Cysteine sulfinic acid decarboxylase (CSAD) expression significantly increased (P < 0.01) in T2 than in other phases. The expression levels of cysteine dioxygenase type 1 (CDO1) and cholesterol 7 alpha-hydroxylase (CYP7A1) were significantly higher (P < 0.001) in T2 than in T3; moreover, the CDO1/glutamate-cysteine ligase catalytic subunit (GCLC) ratio was higher (P < 0.05) in T2 than in T1. Plasma taurine concentrations were positively correlated with plasma methionine (r = 0.51; P < 0.05) and total cholesterol (r = 0.56; P < 0.05) concentrations at T2. Relative CDO1 mRNA expression was upregulated in cultured bovine hepatocytes treated with oleate and propionate, whereas it was downregulated upon acetate treatment. These findings indicate that the increase in plasma taurine concentrations in the T2 phase is associated with changes in lipid and methionine metabolism in Japanese Black steers.
{"title":"Dynamics of Blood Taurine Concentration and its Correlation with Nutritional and Physiological Status during the Fattening Period of Japanese Black Cattle","authors":"Shuntaro Takai, Huseong Lee, Minji Kim, Shinichiro Torii, Nishihara Koki, Joonpyo Oh, Tatsunori Masaki, Kentaro Ikuta, Eiji Iwamoto, Kota Masuda, Yoshinobu Uemoto, Fuminori Terada, Satoshi Haga, Sanggun Roh","doi":"10.1093/jas/skae347","DOIUrl":"https://doi.org/10.1093/jas/skae347","url":null,"abstract":"Taurine, biosynthesized from methionine or cysteine in the liver, plays a crucial regulatory role in bile acid conjugation, antioxidant effects, and glucose and cholesterol metabolism. This may influence the metabolic changes associated with fat accumulation in beef cattle. However, the physiological role of taurine in this species has not been fully elucidated. In this study, we explored the physiological role of taurine in Japanese Black steers (Bos taurus) in different phases during the fattening period. To examine the correlation among plasma taurine concentrations, various physiological parameters, and genes related to taurine synthesis in the liver, we used biopsied liver tissues, blood samples, and rumen fluids collected from 21 steers at three different stages, i.e., early (T1; 13 months of age), middle (T2; 20 months of age), and late (T3; 28 months of age) phases. Additionally, to investigate the regulatory mechanisms underlying the expression profile of taurine synthesis genes, primary bovine hepatocytes obtained from 4-week-old Holstein calves were treated with palmitate, oleate, acetate, propionate, or β-hydroxybutyrate (BHBA). Plasma taurine and cholesterol concentrations significantly (P &lt; 0.001) increased in the T2 phase, which is potentially attributable to increased energy intake and assimilation induced by increased intake of concentrated feed. Cysteine sulfinic acid decarboxylase (CSAD) expression significantly increased (P &lt; 0.01) in T2 than in other phases. The expression levels of cysteine dioxygenase type 1 (CDO1) and cholesterol 7 alpha-hydroxylase (CYP7A1) were significantly higher (P &lt; 0.001) in T2 than in T3; moreover, the CDO1/glutamate-cysteine ligase catalytic subunit (GCLC) ratio was higher (P &lt; 0.05) in T2 than in T1. Plasma taurine concentrations were positively correlated with plasma methionine (r = 0.51; P &lt; 0.05) and total cholesterol (r = 0.56; P &lt; 0.05) concentrations at T2. Relative CDO1 mRNA expression was upregulated in cultured bovine hepatocytes treated with oleate and propionate, whereas it was downregulated upon acetate treatment. These findings indicate that the increase in plasma taurine concentrations in the T2 phase is associated with changes in lipid and methionine metabolism in Japanese Black steers.","PeriodicalId":14895,"journal":{"name":"Journal of animal science","volume":"9 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas W Dobbins, Luke K Fuerniss, Manuel S Hernandez, Bradley J Johnson, Amy L Petry, Paul R Broadway, Nicole C Burdick-Sanchez, Jerrad F Legako
The in-utero environment is key to both fetal and postnatal growth and development. The objective of this study was to determine if administration of an acute low-dose lipopolysaccharide (LPS) to gestating sows during mid to late gestation and post-weaning would alter the offsprings metabolomic profile of the longissimus dorsi (LD) and muscle ultrastructure. Pregnant Camborough sows were randomly assigned to receive LPS (LPS; n= 7) at a dose of 2.5 μg/kg or saline (CON; n = 7) on 78 ± 1.8 d of gestation. At weaning (21 ± 1.3 d of age), barrows (CON n = 17; LPS n = 17) from each treatment were selected to receive a secondary LPS. Barrows were administered the secondary LPS challenge at a dose of 10 μg/kg 7 d post weaning. Twenty-four h after the postnatal LPS dose, barrows (31 ± 1.3 d of age) were euthanized, and each LD was removed. The left LD was utilized for morphometric measurements. Two samples from the medial section of the right LD were preserved for immunohistochemical measurements and metabolomic analyses. Mass spectral data were deconvoluted, aligned, and annotated using MS-DIAL. Univariate and multivariate analyses were conducted using MetaboAnalyst. Pathway analysis was conducted and compared to the Homo sapiens pathway library. Morphometric and immunohistochemical measurements were analyzed using the MIXED procedure of SAS version 9.4. Significance for all analyses was declared at P ≤ 0.05 and tendencies were considered at P ≤ 0.10. Average diameter of myosin heavy chain (MHC) type I and IIB/X fibers was increased (P ≤ 0.048) in LPS offspring compared with CON. Average cross-sectional area was increased (P = 0.030) in MHC IIB/X fibers and tended to be increased (P = 0.080) in MHC I fibers of LPS offspring. There were no differences (P ≥ 0.186) between treatment groups for total nuclei or nuclei positive for MYF5, PAX7, or MYF5 and PAX7 nuclei. Metabolomic analyses identified 14 differentially expressed (P < 0.05) metabolites in the LD between treatment groups. There were 10 metabolites within the LD that tended (P ≤ 0.096) to differ between treatment groups. Thus, this study shows that in-utero immune stimulation using LPS in gestating sows and a subsequent LPS challenge postnatally alters the metabolomic profile and muscle ultrastructure of the LD in weaned pigs.
{"title":"A pre- and postnatal immune challenge influences muscle growth and metabolism in weaned pigs","authors":"Thomas W Dobbins, Luke K Fuerniss, Manuel S Hernandez, Bradley J Johnson, Amy L Petry, Paul R Broadway, Nicole C Burdick-Sanchez, Jerrad F Legako","doi":"10.1093/jas/skae350","DOIUrl":"https://doi.org/10.1093/jas/skae350","url":null,"abstract":"The in-utero environment is key to both fetal and postnatal growth and development. The objective of this study was to determine if administration of an acute low-dose lipopolysaccharide (LPS) to gestating sows during mid to late gestation and post-weaning would alter the offsprings metabolomic profile of the longissimus dorsi (LD) and muscle ultrastructure. Pregnant Camborough sows were randomly assigned to receive LPS (LPS; n= 7) at a dose of 2.5 μg/kg or saline (CON; n = 7) on 78 ± 1.8 d of gestation. At weaning (21 ± 1.3 d of age), barrows (CON n = 17; LPS n = 17) from each treatment were selected to receive a secondary LPS. Barrows were administered the secondary LPS challenge at a dose of 10 μg/kg 7 d post weaning. Twenty-four h after the postnatal LPS dose, barrows (31 ± 1.3 d of age) were euthanized, and each LD was removed. The left LD was utilized for morphometric measurements. Two samples from the medial section of the right LD were preserved for immunohistochemical measurements and metabolomic analyses. Mass spectral data were deconvoluted, aligned, and annotated using MS-DIAL. Univariate and multivariate analyses were conducted using MetaboAnalyst. Pathway analysis was conducted and compared to the Homo sapiens pathway library. Morphometric and immunohistochemical measurements were analyzed using the MIXED procedure of SAS version 9.4. Significance for all analyses was declared at P ≤ 0.05 and tendencies were considered at P ≤ 0.10. Average diameter of myosin heavy chain (MHC) type I and IIB/X fibers was increased (P ≤ 0.048) in LPS offspring compared with CON. Average cross-sectional area was increased (P = 0.030) in MHC IIB/X fibers and tended to be increased (P = 0.080) in MHC I fibers of LPS offspring. There were no differences (P ≥ 0.186) between treatment groups for total nuclei or nuclei positive for MYF5, PAX7, or MYF5 and PAX7 nuclei. Metabolomic analyses identified 14 differentially expressed (P &lt; 0.05) metabolites in the LD between treatment groups. There were 10 metabolites within the LD that tended (P ≤ 0.096) to differ between treatment groups. Thus, this study shows that in-utero immune stimulation using LPS in gestating sows and a subsequent LPS challenge postnatally alters the metabolomic profile and muscle ultrastructure of the LD in weaned pigs.","PeriodicalId":14895,"journal":{"name":"Journal of animal science","volume":"156 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soybeans are widely recognized as a valuable crop, often included as a high-quality protein source in production animal diets. In addition to contributing to the macronutrient composition of the diet, soybeans also contain many minor bioactive components which can influence the health and growth of animals. This review examined the immunomodulatory potential of soy saponins and their specific effects on the inflammatory response, oxidative stress, and intestinal barrier function. Saponins are amphiphilic molecules, a property imparted by their polar carbohydrate chains that attach to a nonpolar aglycone backbone. This structure also complicates their isolation, thus most research investigating soy saponins has been performed in models that only require small amounts of isolated material. Many experiments conducted in vitro or in rodents reported that saponins can reduce damage, particularly in conditions where a challenge was first introduced to stimulate inflammation or oxidative stress. It appears that saponins can exert their anti-inflammatory effects through modulation of the NF-κB pathway, reducing its activation and the release of pro-inflammatory molecules later in the cascade. Furthermore, soy saponins can influence levels of important antioxidative enzymes and reduce the generation of reactive oxygen species, thus attenuating levels of oxidative stress in the model. As these results were obtained from experiments done in vitro or in rodents, they neglect to provide a good representation of how soy saponins may affect some of the greatest consumers of soy-based products, with those being production animals. The work that has been done seems to indicate that soy saponins may exert similar anti-inflammatory and anti-oxidative effects in production animals as those observed in other research models along with immunostimulatory activity that may help boost host defense systems. Overall, there is a dearth of research regarding the effects of soy saponins on species that commonly consume soy products, which begins by developing more effective methods of saponin extraction.
{"title":"Immunomodulatory potential of dietary soybean-derived saponins","authors":"Cameron S White, Ryan N Dilger","doi":"10.1093/jas/skae349","DOIUrl":"https://doi.org/10.1093/jas/skae349","url":null,"abstract":"Soybeans are widely recognized as a valuable crop, often included as a high-quality protein source in production animal diets. In addition to contributing to the macronutrient composition of the diet, soybeans also contain many minor bioactive components which can influence the health and growth of animals. This review examined the immunomodulatory potential of soy saponins and their specific effects on the inflammatory response, oxidative stress, and intestinal barrier function. Saponins are amphiphilic molecules, a property imparted by their polar carbohydrate chains that attach to a nonpolar aglycone backbone. This structure also complicates their isolation, thus most research investigating soy saponins has been performed in models that only require small amounts of isolated material. Many experiments conducted in vitro or in rodents reported that saponins can reduce damage, particularly in conditions where a challenge was first introduced to stimulate inflammation or oxidative stress. It appears that saponins can exert their anti-inflammatory effects through modulation of the NF-κB pathway, reducing its activation and the release of pro-inflammatory molecules later in the cascade. Furthermore, soy saponins can influence levels of important antioxidative enzymes and reduce the generation of reactive oxygen species, thus attenuating levels of oxidative stress in the model. As these results were obtained from experiments done in vitro or in rodents, they neglect to provide a good representation of how soy saponins may affect some of the greatest consumers of soy-based products, with those being production animals. The work that has been done seems to indicate that soy saponins may exert similar anti-inflammatory and anti-oxidative effects in production animals as those observed in other research models along with immunostimulatory activity that may help boost host defense systems. Overall, there is a dearth of research regarding the effects of soy saponins on species that commonly consume soy products, which begins by developing more effective methods of saponin extraction.","PeriodicalId":14895,"journal":{"name":"Journal of animal science","volume":"11 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}