{"title":"Neutrophil extracellular traps potentiate effector T cells via endothelial senescence in uveitis.","authors":"Zuoyi Li, Zhuang Li, Yunwei Hu, Yanyan Xie, Yuxun Shi, Guanyu Chen, Jun Huang, Zhiqiang Xiao, Wenjie Zhu, Haixiang Huang, Minzhen Wang, Jianping Chen, Xiaoqing Chen, Dan Liang","doi":"10.1172/jci.insight.180248","DOIUrl":null,"url":null,"abstract":"<p><p>Autoimmune uveitis (AU) is a sight-threatening ocular autoimmune disorder that often manifests as retinal vasculitis. Increased neutrophil infiltration around retinal vessels has been reported during the progression of AU, while how they function is not fully recognized. Neutrophil extracellular traps (NETs), produced by activated neutrophils, have been suggested to be detrimental in autoimmune diseases. Here, we found that NETs were elevated in patients with active AU, and this was verified in an experimental AU (EAU) mouse model. Depletion of neutrophils or degradation of NETs with deoxyribonuclease-I (DNase I) could decrease CD4+ effector T cell (Teff) infiltration in retina and spleen to alleviate EAU. Moreover, we found that the expression of adhesion molecules, selectin, and antigen-presenting molecules was elevated in EAU retina and in retinal microvascular endothelial cells (RMECs) cocultured with NETs. The stimulated RMECs further facilitated CD4+ T cell adhesion, activation, and differentiation into Teffs. Mechanistically, NETs trigger RMEC activation by hastening cell senescence through the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. Slowing down senescence or inhibiting the cGAS/STING pathway in RMECs reduces the activation and differentiation of CD4+ T cells. These results suggest a deleterious role of NETs in AU. Targeting NETs would offer an effective therapeutic method.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 2","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.180248","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Autoimmune uveitis (AU) is a sight-threatening ocular autoimmune disorder that often manifests as retinal vasculitis. Increased neutrophil infiltration around retinal vessels has been reported during the progression of AU, while how they function is not fully recognized. Neutrophil extracellular traps (NETs), produced by activated neutrophils, have been suggested to be detrimental in autoimmune diseases. Here, we found that NETs were elevated in patients with active AU, and this was verified in an experimental AU (EAU) mouse model. Depletion of neutrophils or degradation of NETs with deoxyribonuclease-I (DNase I) could decrease CD4+ effector T cell (Teff) infiltration in retina and spleen to alleviate EAU. Moreover, we found that the expression of adhesion molecules, selectin, and antigen-presenting molecules was elevated in EAU retina and in retinal microvascular endothelial cells (RMECs) cocultured with NETs. The stimulated RMECs further facilitated CD4+ T cell adhesion, activation, and differentiation into Teffs. Mechanistically, NETs trigger RMEC activation by hastening cell senescence through the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. Slowing down senescence or inhibiting the cGAS/STING pathway in RMECs reduces the activation and differentiation of CD4+ T cells. These results suggest a deleterious role of NETs in AU. Targeting NETs would offer an effective therapeutic method.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.