MRI Radiomics Analysis in the Diagnostic Differentiation of Malignant Soft Tissue Myxoid Sarcomas From Benign Soft Tissue Musculoskeletal Myxomas.

IF 3.3 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Magnetic Resonance Imaging Pub Date : 2025-01-22 DOI:10.1002/jmri.29691
Hadas Benhabib, Daniel Brandenberger, Katherine Lajkosz, Elizabeth G Demicco, Kim M Tsoi, Jay S Wunder, Peter C Ferguson, Anthony M Griffin, Ali Naraghi, Masoom A Haider, Lawrence M White
{"title":"MRI Radiomics Analysis in the Diagnostic Differentiation of Malignant Soft Tissue Myxoid Sarcomas From Benign Soft Tissue Musculoskeletal Myxomas.","authors":"Hadas Benhabib, Daniel Brandenberger, Katherine Lajkosz, Elizabeth G Demicco, Kim M Tsoi, Jay S Wunder, Peter C Ferguson, Anthony M Griffin, Ali Naraghi, Masoom A Haider, Lawrence M White","doi":"10.1002/jmri.29691","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Differentiation of benign myxomas and malignant myxoid sarcomas can be difficult with an overlapping spectrum of morphologic MR findings.</p><p><strong>Purpose: </strong>To assess the diagnostic utility of MRI radiomics in the differentiation of musculoskeletal myxomas and myxoid sarcomas.</p><p><strong>Study type: </strong>Retrospective.</p><p><strong>Population: </strong>A total of 523 patients were included; histologically proven myxomas (N = 201) and myxoid sarcomas (N = 322), randomly divided (70:30) into training:test subsets.</p><p><strong>Sequence/field strength: </strong>T1-weighted (T1W), T2-weighted fat-suppressed (fluid-sensitive), and T1-weighted post-contrast (T1W + C) sequences at 1.0 T, 1.5 T, or 3.0 T.</p><p><strong>Assessment: </strong>Seven semantic (qualitative) tumor features were assessed in each case. Manual 3D tumor segmentations performed with radiomics features extracted from T1W, fluid-sensitive, and T1W + C acquisitions. Models were constructed based on radiomic features from individual sequences and from their combination, both with and without the addition of qualitative tumor features.</p><p><strong>Statistical tests: </strong>Intraclass correlation evaluated in 60 cases segmented by three readers. Features with intraclass correlation <0.7 excluded from further analysis. Boruta feature selection and Random Forest modeling performed using the training-dataset, with resultant models used to assess class discrimination (myxoma vs. myxoid sarcoma) in the test dataset. Radiomics score defined as probability class = myxoma. Logistic regression modeling employed to estimate performance of the radiomics score. Area under the receiver operating characteristic curve (AUC) was used to assess diagnostic performance, and DeLong's test to assess performance between constructed models. A P-value <0.05 was considered significant.</p><p><strong>Results: </strong>Four qualitative semantic features showed significant predictive power in class discrimination. Radiomic models demonstrated excellent differentiation of myxomas from myxoid sarcomas: AUC of 0.9271 (T1W), 0.9049 (fluid-sensitive), and 0.9179 (T1W + C). Incorporation of multiparametric data or semantic features did not significantly improve model performance (P ≥ 0.08) compared to radiomic models derived from any individual MRI sequence alone.</p><p><strong>Data conclusion: </strong>MRI radiomics appears to be accurate in the differentiation of myxomas from myxoid sarcomas. Classification performance did not improve when incorporating qualitative features or multiparametric imaging data.</p><p><strong>Plain language summary: </strong>Accurately distinguishing between benign soft tissue myxomas and malignant myxoid sarcomas is essential for guiding appropriate management but remains challenging with conventional MRI interpretation. This study utilized radiomics, a method that extracts quantitative mathematically derived features from images, to develop predictive models based on routine MRI examination. Analyzing over 500 cases, MRI radiomics demonstrated excellent diagnostic accuracy in differentiating between benign myxomas and malignant myxoid sarcomas, highlighting the potential of the technique, as a powerful non-invasive tool that could complement current diagnostic approaches, and enhance clinical decision-making in patients with soft tissue myxoid tumors of the musculoskeletal system.</p><p><strong>Level of evidence: </strong>3 TECHNICAL EFFICACY: Stage 2.</p>","PeriodicalId":16140,"journal":{"name":"Journal of Magnetic Resonance Imaging","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jmri.29691","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Differentiation of benign myxomas and malignant myxoid sarcomas can be difficult with an overlapping spectrum of morphologic MR findings.

Purpose: To assess the diagnostic utility of MRI radiomics in the differentiation of musculoskeletal myxomas and myxoid sarcomas.

Study type: Retrospective.

Population: A total of 523 patients were included; histologically proven myxomas (N = 201) and myxoid sarcomas (N = 322), randomly divided (70:30) into training:test subsets.

Sequence/field strength: T1-weighted (T1W), T2-weighted fat-suppressed (fluid-sensitive), and T1-weighted post-contrast (T1W + C) sequences at 1.0 T, 1.5 T, or 3.0 T.

Assessment: Seven semantic (qualitative) tumor features were assessed in each case. Manual 3D tumor segmentations performed with radiomics features extracted from T1W, fluid-sensitive, and T1W + C acquisitions. Models were constructed based on radiomic features from individual sequences and from their combination, both with and without the addition of qualitative tumor features.

Statistical tests: Intraclass correlation evaluated in 60 cases segmented by three readers. Features with intraclass correlation <0.7 excluded from further analysis. Boruta feature selection and Random Forest modeling performed using the training-dataset, with resultant models used to assess class discrimination (myxoma vs. myxoid sarcoma) in the test dataset. Radiomics score defined as probability class = myxoma. Logistic regression modeling employed to estimate performance of the radiomics score. Area under the receiver operating characteristic curve (AUC) was used to assess diagnostic performance, and DeLong's test to assess performance between constructed models. A P-value <0.05 was considered significant.

Results: Four qualitative semantic features showed significant predictive power in class discrimination. Radiomic models demonstrated excellent differentiation of myxomas from myxoid sarcomas: AUC of 0.9271 (T1W), 0.9049 (fluid-sensitive), and 0.9179 (T1W + C). Incorporation of multiparametric data or semantic features did not significantly improve model performance (P ≥ 0.08) compared to radiomic models derived from any individual MRI sequence alone.

Data conclusion: MRI radiomics appears to be accurate in the differentiation of myxomas from myxoid sarcomas. Classification performance did not improve when incorporating qualitative features or multiparametric imaging data.

Plain language summary: Accurately distinguishing between benign soft tissue myxomas and malignant myxoid sarcomas is essential for guiding appropriate management but remains challenging with conventional MRI interpretation. This study utilized radiomics, a method that extracts quantitative mathematically derived features from images, to develop predictive models based on routine MRI examination. Analyzing over 500 cases, MRI radiomics demonstrated excellent diagnostic accuracy in differentiating between benign myxomas and malignant myxoid sarcomas, highlighting the potential of the technique, as a powerful non-invasive tool that could complement current diagnostic approaches, and enhance clinical decision-making in patients with soft tissue myxoid tumors of the musculoskeletal system.

Level of evidence: 3 TECHNICAL EFFICACY: Stage 2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.70
自引率
6.80%
发文量
494
审稿时长
2 months
期刊介绍: The Journal of Magnetic Resonance Imaging (JMRI) is an international journal devoted to the timely publication of basic and clinical research, educational and review articles, and other information related to the diagnostic applications of magnetic resonance.
期刊最新文献
Issue Information Deep Learning-Based Techniques in Glioma Brain Tumor Segmentation Using Multi-Parametric MRI: A Review on Clinical Applications and Future Outlooks MRI Assessment of Geometric Microstructural Changes of White Matter in Infants With Periventricular White Matter Injury and Spastic Cerebral Palsy. Diagnosis of Sacroiliitis Through Semi-Supervised Segmentation and Radiomics Feature Analysis of MRI Images. Editorial for "Associations of Central Arterial Stiffness With Brain White Matter Integrity and Gray Matter Volume in MRI Across the Adult Lifespan".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1