Discovering topics and trends in biosecurity law research: A machine learning approach

IF 4.1 2区 医学 Q1 INFECTIOUS DISEASES One Health Pub Date : 2024-12-29 DOI:10.1016/j.onehlt.2024.100964
Yang Liu
{"title":"Discovering topics and trends in biosecurity law research: A machine learning approach","authors":"Yang Liu","doi":"10.1016/j.onehlt.2024.100964","DOIUrl":null,"url":null,"abstract":"<div><div>This study employed machine learning techniques, specifically Latent Dirichlet Allocation (LDA), to analyze 559 articles on biosecurity legislation from 1996 to 2023. The LDA model identified nine key research topics, including Agricultural Management and Production, Biosafety and Environmental Impact, Biological Invasion and Regulation, Biosecurity Legislation and Prevention, Agriculture and Environmental Relations, Virus Infection and Governance, Health Risk Assessment and Detection, Disease Prevention and Biotechnology, and Policy Control and Research. The findings reveal significant trends: an increasing focus on Biosecurity Legislation and Prevention and a declining interest in Agricultural Management and Production. Geographically, Australia, Canada, and the United States lead in biosecurity research, exhibiting diverse research topics. Journal-level analysis highlights central topics such as Agricultural Management and Production, Biosecurity Legislation and Prevention, and Health Risk Assessment and Detection. This study's use of LDA reduces subjective bias, providing a more objective analysis of global biosecurity legislation literature. The research underscores the importance of expanding geographical scope, integrating advanced machine learning models, adopting interdisciplinary approaches, and assessing policy impacts to enhance biosecurity strategies globally.</div></div>","PeriodicalId":19577,"journal":{"name":"One Health","volume":"20 ","pages":"Article 100964"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750572/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"One Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352771424002908","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

This study employed machine learning techniques, specifically Latent Dirichlet Allocation (LDA), to analyze 559 articles on biosecurity legislation from 1996 to 2023. The LDA model identified nine key research topics, including Agricultural Management and Production, Biosafety and Environmental Impact, Biological Invasion and Regulation, Biosecurity Legislation and Prevention, Agriculture and Environmental Relations, Virus Infection and Governance, Health Risk Assessment and Detection, Disease Prevention and Biotechnology, and Policy Control and Research. The findings reveal significant trends: an increasing focus on Biosecurity Legislation and Prevention and a declining interest in Agricultural Management and Production. Geographically, Australia, Canada, and the United States lead in biosecurity research, exhibiting diverse research topics. Journal-level analysis highlights central topics such as Agricultural Management and Production, Biosecurity Legislation and Prevention, and Health Risk Assessment and Detection. This study's use of LDA reduces subjective bias, providing a more objective analysis of global biosecurity legislation literature. The research underscores the importance of expanding geographical scope, integrating advanced machine learning models, adopting interdisciplinary approaches, and assessing policy impacts to enhance biosecurity strategies globally.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
One Health
One Health Medicine-Infectious Diseases
CiteScore
8.10
自引率
4.00%
发文量
95
审稿时长
18 weeks
期刊介绍: One Health - a Gold Open Access journal. The mission of One Health is to provide a platform for rapid communication of high quality scientific knowledge on inter- and intra-species pathogen transmission, bringing together leading experts in virology, bacteriology, parasitology, mycology, vectors and vector-borne diseases, tropical health, veterinary sciences, pathology, immunology, food safety, mathematical modelling, epidemiology, public health research and emergency preparedness. As a Gold Open Access journal, a fee is payable on acceptance of the paper. Please see the Guide for Authors for more information. Submissions to the following categories are welcome: Virology, Bacteriology, Parasitology, Mycology, Vectors and vector-borne diseases, Co-infections and co-morbidities, Disease spatial surveillance, Modelling, Tropical Health, Discovery, Ecosystem Health, Public Health.
期刊最新文献
Profiles and predictors of access to human and veterinary healthcare in multispecies households Anti-phenolic glycolipid antibodies in Mycobacterium bovis infected cattle Shaping the human gut microbiota: The role of canine companionship, lifestyle choices, and Blastocystis sp. A persona-based exploration of rabies post-exposure prophylaxis seeking behavior and its implication for communication strategic planning: Evidence from Thailand Best practices for the experimental design of one health studies on companion animal and owner microbiomes – From data collection to analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1