Enhancing Solubility of a BCS Class II Drug- Itraconazole by Developing and Optimizing Solid Lipid Nanoparticles using a Central Composite Design.

Q2 Pharmacology, Toxicology and Pharmaceutics Pharmaceutical nanotechnology Pub Date : 2025-01-21 DOI:10.2174/0122117385341583250119054309
Irfan A Mohammed, Sriramakamal Jonnalagadda
{"title":"Enhancing Solubility of a BCS Class II Drug- Itraconazole by Developing and Optimizing Solid Lipid Nanoparticles using a Central Composite Design.","authors":"Irfan A Mohammed, Sriramakamal Jonnalagadda","doi":"10.2174/0122117385341583250119054309","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Itraconazole (ICZ) has been approved by the FDA to treat many fungal infections including, blastomycosis, histoplasmosis, and aspergillosis. ICZ can be also used as prophylaxis in the population who are at high risk for developing systemic fungal infections, such as HIV patients, and chemotherapy patients.</p><p><strong>Aim: </strong>However, since ICZ is a BCS Class II drug that has low solubility and high permeability, leads to low oral bioavailability. In addition, the absorption of ICZ from commercial oral dosage forms is highly affected by food intake and pH.</p><p><strong>Objective: </strong>The current study aimed to develop, optimize, and characterize ICZ-loaded solid lipid nanoparticles (ICZ-SLNs) using a Central Composite Design for improved solubility and extendedrelease profile.</p><p><strong>Methods: </strong>ICZ-SLNs were optimized based on physicochemical characteristics. ICZ-SLNs were also evaluated for differential scanning calorimetry (DSC), in-vitro release, lyophilization, transmission electron microscopy (TEM), and physicochemical stability at refrigerated and room temperatures for three months.</p><p><strong>Results: </strong>The optimized ICZ-SLNs formulation showed particle size, polydispersity index, zeta potential, drug content, and entrapment efficiency of 335.6±8.0 nm, 0.25±0.02, -23.8±0.5 mV, 98.3±2.5%, and 99.5±1.5%, respectively. ICZ-SLN dispersions showed extended-release profiles for ICZ compared to the control solution over 24 h. The absence of the endothermic melting drug peak of the lyophilized formulation indicated that the drug was converted to its amorphous form inside the solid matrix. In addition, TEM studies showed spherical shape nanoparticles. Moreover, the optimized ICZ-SLN formulation was stable at both tested storage conditions.</p><p><strong>Conclusion: </strong>The current ICZ formulation could exhibit improved oral bioavailability with better therapeutic outcomes during the treatment of systemic fungal infections.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385341583250119054309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Itraconazole (ICZ) has been approved by the FDA to treat many fungal infections including, blastomycosis, histoplasmosis, and aspergillosis. ICZ can be also used as prophylaxis in the population who are at high risk for developing systemic fungal infections, such as HIV patients, and chemotherapy patients.

Aim: However, since ICZ is a BCS Class II drug that has low solubility and high permeability, leads to low oral bioavailability. In addition, the absorption of ICZ from commercial oral dosage forms is highly affected by food intake and pH.

Objective: The current study aimed to develop, optimize, and characterize ICZ-loaded solid lipid nanoparticles (ICZ-SLNs) using a Central Composite Design for improved solubility and extendedrelease profile.

Methods: ICZ-SLNs were optimized based on physicochemical characteristics. ICZ-SLNs were also evaluated for differential scanning calorimetry (DSC), in-vitro release, lyophilization, transmission electron microscopy (TEM), and physicochemical stability at refrigerated and room temperatures for three months.

Results: The optimized ICZ-SLNs formulation showed particle size, polydispersity index, zeta potential, drug content, and entrapment efficiency of 335.6±8.0 nm, 0.25±0.02, -23.8±0.5 mV, 98.3±2.5%, and 99.5±1.5%, respectively. ICZ-SLN dispersions showed extended-release profiles for ICZ compared to the control solution over 24 h. The absence of the endothermic melting drug peak of the lyophilized formulation indicated that the drug was converted to its amorphous form inside the solid matrix. In addition, TEM studies showed spherical shape nanoparticles. Moreover, the optimized ICZ-SLN formulation was stable at both tested storage conditions.

Conclusion: The current ICZ formulation could exhibit improved oral bioavailability with better therapeutic outcomes during the treatment of systemic fungal infections.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Pharmaceutical nanotechnology
Pharmaceutical nanotechnology Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.20
自引率
0.00%
发文量
46
期刊介绍: Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.
期刊最新文献
Ameliorating Paraquat-Induced Nephrotoxicity in Rats: Protective Effects of Nanocurcumin on Renal Histology and Molecular Pathways. Cancer Therapy with Polymeric Nanocarriers and the Transition to Targeted Cancer Therapy: Advances and Future Directions. Diosgenin-Loaded Silver Nanoparticles Mitigate B[a]P-Induced Lung Fibrosis Through Modulation of Oxidative Stress and Inflammatory Pathways. Innovations in Glycosaminoglycan Delivery: Transforming Joint Health Therapies. Crocin and Nano-Crocin Mitigate Paraquat Hepatotoxicity by Modulating Expression of Genes Involved in Oxidative Stress and Inflammation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1