Seasonal plasticity in daily timing of flight activity in Anopheles stephensi is driven by temperature modulation of dawn entrainment.

Samuel S C Rund, Aidan J O'Donnell, Kimberley F Prior, Daan R van der Veen
{"title":"Seasonal plasticity in daily timing of flight activity in <i>Anopheles stephensi</i> is driven by temperature modulation of dawn entrainment.","authors":"Samuel S C Rund, Aidan J O'Donnell, Kimberley F Prior, Daan R van der Veen","doi":"10.1098/rstb.2023.0343","DOIUrl":null,"url":null,"abstract":"<p><p>The Asian malaria vector <i>Anopheles stephensi</i> is invading Africa, requiring it to adapt to novel climates and ecosystems. In part, this may be facilitated by <i>An. stephensi</i>'s poorly understood seasonal behavioural plasticity in flight timing, leading to earlier biting activity in cold Asian winters and later biting times in the warm summer. Changes in behavioural timing could be directly imposed by seasonal variation in ambient light and temperature levels or result from altered entrainment of intrinsically expressed circadian rhythms by these factors. We demonstrate that <i>An. stephensi</i> entrained flight activity timing is phase-locked to dawn and is not affected by constant ambient temperature, which cannot explain earlier biting activity in colder winters with later dawn. Instead, we show that where night temperatures are the colder part of daily temperature cycle; the entrained phase-angle between dawn and flight activity is altered, hereby increasingly colder, winter-like nights progressively advance flight activity onset. We propose that seasonal timing plasticity optimizes behaviour to warmer daytime in winter, and colder nights in summer, providing protection against both heat-desiccation and cold immobility. The adaptive advantage of this plasticity could be relevant to the successful invasion and survival of <i>An. stephensi</i> in African climates, and changing climate worldwide.This article is part of the Theo Murphy meeting issue, 'Circadian rhythms in infection and immunity'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"380 1918","pages":"20230343"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753879/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2023.0343","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Asian malaria vector Anopheles stephensi is invading Africa, requiring it to adapt to novel climates and ecosystems. In part, this may be facilitated by An. stephensi's poorly understood seasonal behavioural plasticity in flight timing, leading to earlier biting activity in cold Asian winters and later biting times in the warm summer. Changes in behavioural timing could be directly imposed by seasonal variation in ambient light and temperature levels or result from altered entrainment of intrinsically expressed circadian rhythms by these factors. We demonstrate that An. stephensi entrained flight activity timing is phase-locked to dawn and is not affected by constant ambient temperature, which cannot explain earlier biting activity in colder winters with later dawn. Instead, we show that where night temperatures are the colder part of daily temperature cycle; the entrained phase-angle between dawn and flight activity is altered, hereby increasingly colder, winter-like nights progressively advance flight activity onset. We propose that seasonal timing plasticity optimizes behaviour to warmer daytime in winter, and colder nights in summer, providing protection against both heat-desiccation and cold immobility. The adaptive advantage of this plasticity could be relevant to the successful invasion and survival of An. stephensi in African climates, and changing climate worldwide.This article is part of the Theo Murphy meeting issue, 'Circadian rhythms in infection and immunity'.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.80
自引率
1.60%
发文量
365
审稿时长
3 months
期刊介绍: The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas): Organismal, environmental and evolutionary biology Neuroscience and cognition Cellular, molecular and developmental biology Health and disease.
期刊最新文献
BioClocks UK: driving robust cycles of discovery to impact. Characterization of extracellular vesicles released from Prochlorococcus MED4 at the steady state and under a light-dark cycle. Chronic CRYPTOCHROME deficiency enhances cell-intrinsic antiviral defences. Circadian gating: concepts, processes, and opportunities. Circadian metabolic adaptations to infections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1