Manoj Khanal, Brent R Logan, Anjishnu Banerjee, Xi Fang, Kwang Woo Ahn
{"title":"A Commensurate Prior Model With Random Effects for Survival and Competing Risk Outcomes to Accommodate Historical Controls.","authors":"Manoj Khanal, Brent R Logan, Anjishnu Banerjee, Xi Fang, Kwang Woo Ahn","doi":"10.1002/pst.2464","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical trials (CTs) often suffer from small sample sizes due to limited budgets and patient enrollment challenges. Using historical data for the CT data analysis may boost statistical power and reduce the required sample size. Existing methods on borrowing information from historical data with right-censored outcomes did not consider matching between historical data and CT data to reduce the heterogeneity. In addition, they studied the survival outcome only, not competing risk outcomes. Therefore, we propose a clustering-based commensurate prior model with random effects for both survival and competing risk outcomes that effectively borrows information based on the degree of comparability between historical and CT data. Simulation results show that the proposed method controls type I errors better and has a lower bias than some competing methods. We apply our method to a phase III CT which compares the effectiveness of bone marrow donated from family members with only partially matched bone marrow versus two partially matched cord blood units to treat leukemia and lymphoma.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":"24 1","pages":"e2464"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2464","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Clinical trials (CTs) often suffer from small sample sizes due to limited budgets and patient enrollment challenges. Using historical data for the CT data analysis may boost statistical power and reduce the required sample size. Existing methods on borrowing information from historical data with right-censored outcomes did not consider matching between historical data and CT data to reduce the heterogeneity. In addition, they studied the survival outcome only, not competing risk outcomes. Therefore, we propose a clustering-based commensurate prior model with random effects for both survival and competing risk outcomes that effectively borrows information based on the degree of comparability between historical and CT data. Simulation results show that the proposed method controls type I errors better and has a lower bias than some competing methods. We apply our method to a phase III CT which compares the effectiveness of bone marrow donated from family members with only partially matched bone marrow versus two partially matched cord blood units to treat leukemia and lymphoma.
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.