Artificial Intelligence in Pediatric Epilepsy Detection: Balancing Effectiveness With Ethical Considerations for Welfare.

IF 2.1 Q2 MEDICINE, GENERAL & INTERNAL Health Science Reports Pub Date : 2025-01-22 eCollection Date: 2025-01-01 DOI:10.1002/hsr2.70372
Marina Ramzy Mourid, Hamza Irfan, Malik Olatunde Oduoye
{"title":"Artificial Intelligence in Pediatric Epilepsy Detection: Balancing Effectiveness With Ethical Considerations for Welfare.","authors":"Marina Ramzy Mourid, Hamza Irfan, Malik Olatunde Oduoye","doi":"10.1002/hsr2.70372","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aim: </strong>Epilepsy is a major neurological challenge, especially for pediatric populations. It profoundly impacts both developmental progress and quality of life in affected children. With the advent of artificial intelligence (AI), there's a growing interest in leveraging its capabilities to improve the diagnosis and management of pediatric epilepsy. This review aims to assess the effectiveness of AI in pediatric epilepsy detection while considering the ethical implications surrounding its implementation.</p><p><strong>Methodology: </strong>A comprehensive systematic review was conducted across multiple databases including PubMed, EMBASE, Google Scholar, Scopus, and Medline. Search terms encompassed \"pediatric epilepsy,\" \"artificial intelligence,\" \"machine learning,\" \"ethical considerations,\" and \"data security.\" Publications from the past decade were scrutinized for methodological rigor, with a focus on studies evaluating AI's efficacy in pediatric epilepsy detection and management.</p><p><strong>Results: </strong>AI systems have demonstrated strong potential in diagnosing and monitoring pediatric epilepsy, often matching clinical accuracy. For example, AI-driven decision support achieved 93.4% accuracy in diagnosis, closely aligning with expert assessments. Specific methods, like EEG-based AI for detecting interictal discharges, showed high specificity (93.33%-96.67%) and sensitivity (76.67%-93.33%), while neuroimaging approaches using rs-fMRI and DTI reached up to 97.5% accuracy in identifying microstructural abnormalities. Deep learning models, such as CNN-LSTM, have also enhanced seizure detection from video by capturing subtle movement and expression cues. Non-EEG sensor-based methods effectively identified nocturnal seizures, offering promising support for pediatric care. However, ethical considerations around privacy, data security, and model bias remain crucial for responsible AI integration.</p><p><strong>Conclusion: </strong>While AI holds immense potential to enhance pediatric epilepsy management, ethical considerations surrounding transparency, fairness, and data security must be rigorously addressed. Collaborative efforts among stakeholders are imperative to navigate these ethical challenges effectively, ensuring responsible AI integration and optimizing patient outcomes in pediatric epilepsy care.</p>","PeriodicalId":36518,"journal":{"name":"Health Science Reports","volume":"8 1","pages":"e70372"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751886/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Science Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/hsr2.70372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aim: Epilepsy is a major neurological challenge, especially for pediatric populations. It profoundly impacts both developmental progress and quality of life in affected children. With the advent of artificial intelligence (AI), there's a growing interest in leveraging its capabilities to improve the diagnosis and management of pediatric epilepsy. This review aims to assess the effectiveness of AI in pediatric epilepsy detection while considering the ethical implications surrounding its implementation.

Methodology: A comprehensive systematic review was conducted across multiple databases including PubMed, EMBASE, Google Scholar, Scopus, and Medline. Search terms encompassed "pediatric epilepsy," "artificial intelligence," "machine learning," "ethical considerations," and "data security." Publications from the past decade were scrutinized for methodological rigor, with a focus on studies evaluating AI's efficacy in pediatric epilepsy detection and management.

Results: AI systems have demonstrated strong potential in diagnosing and monitoring pediatric epilepsy, often matching clinical accuracy. For example, AI-driven decision support achieved 93.4% accuracy in diagnosis, closely aligning with expert assessments. Specific methods, like EEG-based AI for detecting interictal discharges, showed high specificity (93.33%-96.67%) and sensitivity (76.67%-93.33%), while neuroimaging approaches using rs-fMRI and DTI reached up to 97.5% accuracy in identifying microstructural abnormalities. Deep learning models, such as CNN-LSTM, have also enhanced seizure detection from video by capturing subtle movement and expression cues. Non-EEG sensor-based methods effectively identified nocturnal seizures, offering promising support for pediatric care. However, ethical considerations around privacy, data security, and model bias remain crucial for responsible AI integration.

Conclusion: While AI holds immense potential to enhance pediatric epilepsy management, ethical considerations surrounding transparency, fairness, and data security must be rigorously addressed. Collaborative efforts among stakeholders are imperative to navigate these ethical challenges effectively, ensuring responsible AI integration and optimizing patient outcomes in pediatric epilepsy care.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Health Science Reports
Health Science Reports Medicine-Medicine (all)
CiteScore
1.80
自引率
0.00%
发文量
458
审稿时长
20 weeks
期刊最新文献
Biosafety Management Practices Among Clinical Laboratory Professionals in Debre Berhan Town Governmental Hospitals, Ethiopia: A Cross-Sectional Study. Gastrointestinal Parasites With Their Risk Factors in Tharu Indigenous People in Southern Nepal: A Cross-Sectional Study. Enhancing Vaccine Uptake Among Persons With Disabilities: Insights From Ghana and Implications for the Philippines. (South-)West to (North-)East Directional Movement of Respiratory Virus Activity in Europe: A Spatial-Temporal Cross-Sectional Study. Knowledge and Awareness of Pre-Exposure Prophylaxis Among Men in Sub-Saharan Africa: A Scoping Review Protocol.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1