Multiple Model Optimal Sampling Promotes Accurate Vancomycin Area-Under-the-Curve Estimation Using a Single Sample in Critically Ill Children.

IF 2.8 4区 医学 Q2 MEDICAL LABORATORY TECHNOLOGY Therapeutic Drug Monitoring Pub Date : 2025-01-23 DOI:10.1097/FTD.0000000000001293
Kevin J Downes, Anna Sharova, Judith Malone, Audrey R Odom John, Athena F Zuppa, Michael N Neely
{"title":"Multiple Model Optimal Sampling Promotes Accurate Vancomycin Area-Under-the-Curve Estimation Using a Single Sample in Critically Ill Children.","authors":"Kevin J Downes, Anna Sharova, Judith Malone, Audrey R Odom John, Athena F Zuppa, Michael N Neely","doi":"10.1097/FTD.0000000000001293","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Area-under-the-curve (AUC)-directed vancomycin therapy is recommended; however, AUC estimation in critically ill children is difficult owing to the need for multiple samples and lack of informative models.</p><p><strong>Methods: </strong>The authors prospectively enrolled critically ill children receiving intravenous (IV) vancomycin for suspected infection and evaluated the accuracy of Bayesian estimation of AUC from a single, optimally timed sample. During the dosing interval, when clinical therapeutic drug monitoring was performed, an optimally timed sample was collected, which was determined for each subject using an established population pharmacokinetic model and the multiple model optimal function of Pmetrics, a nonparametric population pharmacokinetic modeling software. The model was embedded in InsightRx NOVA (InsightRx, Inc.) for individual Bayesian estimation of AUC using the optimal sample versus all available samples (optimally timed sample + clinical samples).</p><p><strong>Results: </strong>Eighteen children were included. The optimal sampling time to inform Bayesian estimation of vancomycin AUC was highly variable, with trough samples being optimally informative in 32% of children. Optimal samples were collected by clinical nurses within 15 minutes of the goal time in 14 of 18 participants (78%). Compared with all samples, Bayesian AUC estimation with optimal samples had a mean bias of 0.4% (±5.9%) and mean imprecision of 4.6% (±3.6%). Bias of optimal sampling was <10% for 17 of the 18 participants (94%). When estimating AUC using only a peak sample (≤2 hours after dose) or only a trough (≤30 minutes before next dose), bias was <10% for 78% and 86% of participants, respectively.</p><p><strong>Conclusions: </strong>Optimal sampling supports accurate Bayesian estimation of vancomycin AUC from a single plasma sample in critically ill children.</p>","PeriodicalId":23052,"journal":{"name":"Therapeutic Drug Monitoring","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic Drug Monitoring","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FTD.0000000000001293","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Area-under-the-curve (AUC)-directed vancomycin therapy is recommended; however, AUC estimation in critically ill children is difficult owing to the need for multiple samples and lack of informative models.

Methods: The authors prospectively enrolled critically ill children receiving intravenous (IV) vancomycin for suspected infection and evaluated the accuracy of Bayesian estimation of AUC from a single, optimally timed sample. During the dosing interval, when clinical therapeutic drug monitoring was performed, an optimally timed sample was collected, which was determined for each subject using an established population pharmacokinetic model and the multiple model optimal function of Pmetrics, a nonparametric population pharmacokinetic modeling software. The model was embedded in InsightRx NOVA (InsightRx, Inc.) for individual Bayesian estimation of AUC using the optimal sample versus all available samples (optimally timed sample + clinical samples).

Results: Eighteen children were included. The optimal sampling time to inform Bayesian estimation of vancomycin AUC was highly variable, with trough samples being optimally informative in 32% of children. Optimal samples were collected by clinical nurses within 15 minutes of the goal time in 14 of 18 participants (78%). Compared with all samples, Bayesian AUC estimation with optimal samples had a mean bias of 0.4% (±5.9%) and mean imprecision of 4.6% (±3.6%). Bias of optimal sampling was <10% for 17 of the 18 participants (94%). When estimating AUC using only a peak sample (≤2 hours after dose) or only a trough (≤30 minutes before next dose), bias was <10% for 78% and 86% of participants, respectively.

Conclusions: Optimal sampling supports accurate Bayesian estimation of vancomycin AUC from a single plasma sample in critically ill children.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Therapeutic Drug Monitoring
Therapeutic Drug Monitoring 医学-毒理学
CiteScore
5.00
自引率
8.00%
发文量
213
审稿时长
4-8 weeks
期刊介绍: Therapeutic Drug Monitoring is a peer-reviewed, multidisciplinary journal directed to an audience of pharmacologists, clinical chemists, laboratorians, pharmacists, drug researchers and toxicologists. It fosters the exchange of knowledge among the various disciplines–clinical pharmacology, pathology, toxicology, analytical chemistry–that share a common interest in Therapeutic Drug Monitoring. The journal presents studies detailing the various factors that affect the rate and extent drugs are absorbed, metabolized, and excreted. Regular features include review articles on specific classes of drugs, original articles, case reports, technical notes, and continuing education articles.
期刊最新文献
Optimizing Cefiderocol Dosing Through Population Pharmacokinetic/Pharmacodynamic Simulation: An Assessment of Drug Cost Reductions. Coadministration of Voriconazole and Rifabutin Can Increase the Risk of Adverse Drug Reactions in Patients With Multiple Infections. Model-Informed Dosing Optimization of Tacrolimus for Concomitant Administration With Itraconazole to Japanese Lung Transplant Recipients. A Refined Population Pharmacokinetic Model-Based Guideline for Individualized PEGasparaginase Dosing in Pediatric Acute Lymphoblastic Leukemia. The Case of Dolutegravir Plus Darunavir Antiretroviral Regimens: Is It Always Useful to Double the Drug Doses?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1