Lactic acid in the vaginal milieu modulates the Candida-host interaction.

IF 5.5 1区 农林科学 Q1 IMMUNOLOGY Virulence Pub Date : 2025-12-01 Epub Date: 2025-01-22 DOI:10.1080/21505594.2025.2451165
Diletta Rosati, Marisa Valentine, Mariolina Bruno, Arnab Pradhan, Axel Dietschmann, Martin Jaeger, Ian Leaves, Frank L van de Veerdonk, Leo A B Joosten, Sumita Roy, Mark H T Stappers, Neil A R Gow, Bernhard Hube, Alistair J P Brown, Mark S Gresnigt, Mihai G Netea
{"title":"Lactic acid in the vaginal milieu modulates the <i>Candida</i>-host interaction.","authors":"Diletta Rosati, Marisa Valentine, Mariolina Bruno, Arnab Pradhan, Axel Dietschmann, Martin Jaeger, Ian Leaves, Frank L van de Veerdonk, Leo A B Joosten, Sumita Roy, Mark H T Stappers, Neil A R Gow, Bernhard Hube, Alistair J P Brown, Mark S Gresnigt, Mihai G Netea","doi":"10.1080/21505594.2025.2451165","DOIUrl":null,"url":null,"abstract":"<p><p>Vulvovaginal candidiasis (VVC) is one of the most common infections caused by <i>Candida albicans</i>. VVC is characterized by an inadequate hyperinflammatory response and clinical symptoms associated with <i>Candida</i> colonization of the vaginal mucosa. Compared to other host niches in which <i>C. albicans</i> can cause infection, the vaginal environment is extremely rich in lactic acid that is produced by the vaginal microbiota. We examined how lactic acid abundance in the vaginal niche impacts the interaction between <i>C. albicans</i> and the human immune system using an <i>in vitro</i> culture in vaginal simulative medium (VSM). The presence of lactic acid in VSM (VSM+LA) increased <i>C. albicans</i> proliferation, hyphal length, and its ability to cause damage during subsequent infection of vaginal epithelial cells. The cell wall of <i>C. albicans</i> cells grown in VSM+LA displayed a robust mannan fibrillar structure, β-glucan exposure, and low chitin content. These cell wall changes were associated with altered immune responses and an increased ability of the fungus to induce trained immunity. Neutrophils were compromised in clearing <i>C. albicans</i> grown in VSM+LA conditions, despite mounting stronger oxidative responses. Collectively, we found that fungal adaptation to lactic acid in a vaginal simulative context increases its immunogenicity favouring a pro-inflammatory state. This potentially contributes to the immune response dysregulation and neutrophil recruitment observed during recurrent VVC.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"16 1","pages":"2451165"},"PeriodicalIF":5.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760238/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virulence","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21505594.2025.2451165","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vulvovaginal candidiasis (VVC) is one of the most common infections caused by Candida albicans. VVC is characterized by an inadequate hyperinflammatory response and clinical symptoms associated with Candida colonization of the vaginal mucosa. Compared to other host niches in which C. albicans can cause infection, the vaginal environment is extremely rich in lactic acid that is produced by the vaginal microbiota. We examined how lactic acid abundance in the vaginal niche impacts the interaction between C. albicans and the human immune system using an in vitro culture in vaginal simulative medium (VSM). The presence of lactic acid in VSM (VSM+LA) increased C. albicans proliferation, hyphal length, and its ability to cause damage during subsequent infection of vaginal epithelial cells. The cell wall of C. albicans cells grown in VSM+LA displayed a robust mannan fibrillar structure, β-glucan exposure, and low chitin content. These cell wall changes were associated with altered immune responses and an increased ability of the fungus to induce trained immunity. Neutrophils were compromised in clearing C. albicans grown in VSM+LA conditions, despite mounting stronger oxidative responses. Collectively, we found that fungal adaptation to lactic acid in a vaginal simulative context increases its immunogenicity favouring a pro-inflammatory state. This potentially contributes to the immune response dysregulation and neutrophil recruitment observed during recurrent VVC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Virulence
Virulence IMMUNOLOGY-MICROBIOLOGY
CiteScore
9.20
自引率
1.90%
发文量
123
审稿时长
6-12 weeks
期刊介绍: Virulence is a fully open access peer-reviewed journal. All articles will (if accepted) be available for anyone to read anywhere, at any time immediately on publication. Virulence is the first international peer-reviewed journal of its kind to focus exclusively on microbial pathogenicity, the infection process and host-pathogen interactions. To address the new infectious challenges, emerging infectious agents and antimicrobial resistance, there is a clear need for interdisciplinary research.
期刊最新文献
Human macrophage response to the emerging enteric pathogen Aeromonas veronii: Inflammation, apoptosis, and downregulation of histones. Emerging West African Genotype Chikungunya Virus in Mosquito Virome. Are Escherichia coli causing recurrent cystitis just ordinary uropathogenic E. coli (UPEC) strains? Arginine depletion-induced autophagy and metabolic dysregulation are involved in the disease severity of hand, foot, and mouth disease. Effect of COVID-19 infection on thyroid function status and clinical indexes among hypothyroid outpatients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1