Early ultrastructural damage in retina and optic nerve following intraocular pressure elevation

IF 1.5 4区 心理学 Q4 NEUROSCIENCES Vision Research Pub Date : 2025-02-01 DOI:10.1016/j.visres.2025.108544
Carla Andreia Abreu , Gabriel Ferraz , Rômulo C. dos Santos , Luciana Conde , Danillo P. Dantas , Bráulio S. Archanjo , Rafael Linden , Pedro M. Pimentel-Coelho , Silvana Allodi
{"title":"Early ultrastructural damage in retina and optic nerve following intraocular pressure elevation","authors":"Carla Andreia Abreu ,&nbsp;Gabriel Ferraz ,&nbsp;Rômulo C. dos Santos ,&nbsp;Luciana Conde ,&nbsp;Danillo P. Dantas ,&nbsp;Bráulio S. Archanjo ,&nbsp;Rafael Linden ,&nbsp;Pedro M. Pimentel-Coelho ,&nbsp;Silvana Allodi","doi":"10.1016/j.visres.2025.108544","DOIUrl":null,"url":null,"abstract":"<div><div>Elevated intraocular pressure (IOP) is a significant risk factor for glaucoma, causing structural and functional damage to the eye. Increased IOP compromises the metabolic and structural integrity of retinal ganglion cell (RGC) axons, leading to progressive degeneration and influencing the ocular immune response. This study investigated early cellular and molecular changes in the retina and optic nerve (ON) following ocular hypertension (OHT). A pigmented rat model was used, with OHT induced through low-temperature cauterization of the limbal vascular plexus. To assess the effects at early time points after OHT, transmission electron microscopy (TEM) was employed to analyze ultrastructural changes in the retina and ON, while immunofluorescence was used to evaluate cellular responses. Flow cytometry was used to examine alterations in immune-cell populations. Within 24 h post-OHT, ultrastructural changes were detected in the cytoplasm of RGCs, indicating early cellular alterations undetectable by conventional microscopy. These ultrastructural modifications progressed further at 48 and 72 h, despite the absence of overt RGC loss or disruptions in retinal layer integrity. Changes in the axons and nodes of Ranvier were evident within the first 24 h after ocular hypertension, becoming more pronounced by 72 h. These findings offer novel insights into the early pathogenesis of glaucoma, highlighting critical early impacts that could guide the development of new therapeutic strategies to prevent irreversible RGC loss.</div></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":"227 ","pages":"Article 108544"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042698925000057","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Elevated intraocular pressure (IOP) is a significant risk factor for glaucoma, causing structural and functional damage to the eye. Increased IOP compromises the metabolic and structural integrity of retinal ganglion cell (RGC) axons, leading to progressive degeneration and influencing the ocular immune response. This study investigated early cellular and molecular changes in the retina and optic nerve (ON) following ocular hypertension (OHT). A pigmented rat model was used, with OHT induced through low-temperature cauterization of the limbal vascular plexus. To assess the effects at early time points after OHT, transmission electron microscopy (TEM) was employed to analyze ultrastructural changes in the retina and ON, while immunofluorescence was used to evaluate cellular responses. Flow cytometry was used to examine alterations in immune-cell populations. Within 24 h post-OHT, ultrastructural changes were detected in the cytoplasm of RGCs, indicating early cellular alterations undetectable by conventional microscopy. These ultrastructural modifications progressed further at 48 and 72 h, despite the absence of overt RGC loss or disruptions in retinal layer integrity. Changes in the axons and nodes of Ranvier were evident within the first 24 h after ocular hypertension, becoming more pronounced by 72 h. These findings offer novel insights into the early pathogenesis of glaucoma, highlighting critical early impacts that could guide the development of new therapeutic strategies to prevent irreversible RGC loss.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Vision Research
Vision Research 医学-神经科学
CiteScore
3.70
自引率
16.70%
发文量
111
审稿时长
66 days
期刊介绍: Vision Research is a journal devoted to the functional aspects of human, vertebrate and invertebrate vision and publishes experimental and observational studies, reviews, and theoretical and computational analyses. Vision Research also publishes clinical studies relevant to normal visual function and basic research relevant to visual dysfunction or its clinical investigation. Functional aspects of vision is interpreted broadly, ranging from molecular and cellular function to perception and behavior. Detailed descriptions are encouraged but enough introductory background should be included for non-specialists. Theoretical and computational papers should give a sense of order to the facts or point to new verifiable observations. Papers dealing with questions in the history of vision science should stress the development of ideas in the field.
期刊最新文献
Low correlation between visual discomfort image ratings and hypersensitivity questions is improved with functional questions Editorial Board Emerging strategies targeting genes and cells in glaucoma Scene complexity and the detail trace of human long-term visual memory The effects of feedback and task accuracy in serial dependence to orientation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1