{"title":"A systematic review of the molecular mechanisms related to anthelmintic resistance in Haemonchus contortus: A contemporary narrative.","authors":"Janaelia Ferreira Vasconcelos Rodrigues, Jomar Patricio Monteiro, Thayany Magalhães Almeida, Marcelo Beltrão Molento","doi":"10.1016/j.vetpar.2025.110394","DOIUrl":null,"url":null,"abstract":"<p><p>Haemonchus contortus is a gastrointestinal parasite that affects ruminants (cattle, sheep, etc.), having a significant welfare impact worldwide. The rise of anthelmintic resistance poses a growing challenge to adequate control, compromising the success of treatments. This study presents a systematic review of the molecular mechanisms involved in the resistance of H. contortus to anthelmintic drugs. Following an extensive literature search (9075 total articles/excluding duplications), 61 articles were examined. From these, benzimidazoles (BZD) and macrocyclic lactone (ML) were the most reported drug classes (17 and 29, respectively). The mutations in the β-tubulin gene were the primary mechanism of BZD resistance. Important comparisons from early reports of resistance mechanisms to ML (published before 2020) mainly based on parasite-population gene expression (e.g., ligand-gated chloride channels, LGCC, and P-glycoproteins, PGP) with more recent genomic and transcriptomic data (e.g., transcription factor, cky-1 gene) are highlighted. Additionally, resistance mechanisms to levamisole (LEV) and monepantel are discussed, showing evidence of polymorphisms in genes related to the nicotinic acetylcholine receptors (nAChR). Considering the available data, it is possible to divide the reports into two technological periods, evidencing that the availability of a chromosome-level genome for H. contortus in association with experiments based on controlled genetic crosses and transcriptome-wide data allowed for the visualization of genes and polymorphisms that were previously indistinguishable from unrelated genetic variation (i.e., genetic noise). Therefore, the study of anthelmintic resistance mechanisms is facing new possibilities, reflecting the large data banks and the speed at which this information is being processed. We suggest that new publications on drug resistance should adopt the approaches and refer to this new era of scientific discoveries. Consistent data interpretation, including artificial intelligence (AI) support, will help us to suggest novel biological mechanisms involved in drug resistance and predict its evolution, allowing a more comprehensible approach toward sustainable parasite control strategies.</p>","PeriodicalId":23716,"journal":{"name":"Veterinary parasitology","volume":"334 ","pages":"110394"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary parasitology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.vetpar.2025.110394","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Haemonchus contortus is a gastrointestinal parasite that affects ruminants (cattle, sheep, etc.), having a significant welfare impact worldwide. The rise of anthelmintic resistance poses a growing challenge to adequate control, compromising the success of treatments. This study presents a systematic review of the molecular mechanisms involved in the resistance of H. contortus to anthelmintic drugs. Following an extensive literature search (9075 total articles/excluding duplications), 61 articles were examined. From these, benzimidazoles (BZD) and macrocyclic lactone (ML) were the most reported drug classes (17 and 29, respectively). The mutations in the β-tubulin gene were the primary mechanism of BZD resistance. Important comparisons from early reports of resistance mechanisms to ML (published before 2020) mainly based on parasite-population gene expression (e.g., ligand-gated chloride channels, LGCC, and P-glycoproteins, PGP) with more recent genomic and transcriptomic data (e.g., transcription factor, cky-1 gene) are highlighted. Additionally, resistance mechanisms to levamisole (LEV) and monepantel are discussed, showing evidence of polymorphisms in genes related to the nicotinic acetylcholine receptors (nAChR). Considering the available data, it is possible to divide the reports into two technological periods, evidencing that the availability of a chromosome-level genome for H. contortus in association with experiments based on controlled genetic crosses and transcriptome-wide data allowed for the visualization of genes and polymorphisms that were previously indistinguishable from unrelated genetic variation (i.e., genetic noise). Therefore, the study of anthelmintic resistance mechanisms is facing new possibilities, reflecting the large data banks and the speed at which this information is being processed. We suggest that new publications on drug resistance should adopt the approaches and refer to this new era of scientific discoveries. Consistent data interpretation, including artificial intelligence (AI) support, will help us to suggest novel biological mechanisms involved in drug resistance and predict its evolution, allowing a more comprehensible approach toward sustainable parasite control strategies.
期刊介绍:
The journal Veterinary Parasitology has an open access mirror journal,Veterinary Parasitology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
This journal is concerned with those aspects of helminthology, protozoology and entomology which are of interest to animal health investigators, veterinary practitioners and others with a special interest in parasitology. Papers of the highest quality dealing with all aspects of disease prevention, pathology, treatment, epidemiology, and control of parasites in all domesticated animals, fall within the scope of the journal. Papers of geographically limited (local) interest which are not of interest to an international audience will not be accepted. Authors who submit papers based on local data will need to indicate why their paper is relevant to a broader readership.
Parasitological studies on laboratory animals fall within the scope of the journal only if they provide a reasonably close model of a disease of domestic animals. Additionally the journal will consider papers relating to wildlife species where they may act as disease reservoirs to domestic animals, or as a zoonotic reservoir. Case studies considered to be unique or of specific interest to the journal, will also be considered on occasions at the Editors'' discretion. Papers dealing exclusively with the taxonomy of parasites do not fall within the scope of the journal.