Impact of disinfection methods used in the slaughterhouse environment on microbiome diversity throughout the meat production chain

IF 4.8 Q1 MICROBIOLOGY Current Research in Microbial Sciences Pub Date : 2025-01-01 DOI:10.1016/j.crmicr.2024.100336
Wissal Naim , Julia Manetsberger , Leyre Lavilla Lerma , Nabil Benomar , Natacha Caballero Gómez , Inmaculada S. Cuesta-Bertomeu , Jaime Ángel Gata Díaz , Hikmate Abriouel
{"title":"Impact of disinfection methods used in the slaughterhouse environment on microbiome diversity throughout the meat production chain","authors":"Wissal Naim ,&nbsp;Julia Manetsberger ,&nbsp;Leyre Lavilla Lerma ,&nbsp;Nabil Benomar ,&nbsp;Natacha Caballero Gómez ,&nbsp;Inmaculada S. Cuesta-Bertomeu ,&nbsp;Jaime Ángel Gata Díaz ,&nbsp;Hikmate Abriouel","doi":"10.1016/j.crmicr.2024.100336","DOIUrl":null,"url":null,"abstract":"<div><div>Slaughterhouse environments are prone to microbial contamination, influenced by factors like set-up, size and area as well as disinfection practices. Thus, effective control measures are crucial to prevent the spread of pathogens and their contaminant genes (antimicrobial resistance genes and virulence factors) throughout the food chain. In the present study, we assessed the microbial contamination in environmental surfaces of three slaughterhouses located in the Jaén province (Spain). We also evaluated the impact of different disinfection strategies on microbial loads and diversity by means of culture dependent and independent methods. The results revealed a statistically significant inter- and intra-specific differences in microbial loads including the most important pathogens such as pseudomonads, staphylococci, <em>Escherichia coli, Salmonella</em> sp. and <em>Campylobacter jejuni</em>. Disinfection strategies using routine disinfectant (used by the slaughterhouse), HLE disinfectant, UV, or combinations thereof showed varying effectiveness. The newly developed sustainable HLE disinfectant was most effective, while UV had the lowest disinfection strength, and routine disinfectants failed to eradicate all pathogens.</div><div>Metagenomic analysis identified Pseudomonadota as the dominant phylum, followed by Actinomycetota and Bacteroidota. Results furthermore indicated shifts from sacrifice to cold rooms, with an increase in Gammaproteobacteria, particularly <em>Moraxellaceae</em> (represented by <em>Psychrobacter cryohalolentis</em>) over <em>Acinetobacter</em> sp. In conclusion, this study highlights the potential of HLE disinfectant (alone or in combination with the routine disinfectant) as a more effective disinfection measure on environmental surfaces, particularly for combating multi-drug resistant pathogens compared to other disinfection methods currently used.</div></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":"8 ","pages":"Article 100336"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751542/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Microbial Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666517424001196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Slaughterhouse environments are prone to microbial contamination, influenced by factors like set-up, size and area as well as disinfection practices. Thus, effective control measures are crucial to prevent the spread of pathogens and their contaminant genes (antimicrobial resistance genes and virulence factors) throughout the food chain. In the present study, we assessed the microbial contamination in environmental surfaces of three slaughterhouses located in the Jaén province (Spain). We also evaluated the impact of different disinfection strategies on microbial loads and diversity by means of culture dependent and independent methods. The results revealed a statistically significant inter- and intra-specific differences in microbial loads including the most important pathogens such as pseudomonads, staphylococci, Escherichia coli, Salmonella sp. and Campylobacter jejuni. Disinfection strategies using routine disinfectant (used by the slaughterhouse), HLE disinfectant, UV, or combinations thereof showed varying effectiveness. The newly developed sustainable HLE disinfectant was most effective, while UV had the lowest disinfection strength, and routine disinfectants failed to eradicate all pathogens.
Metagenomic analysis identified Pseudomonadota as the dominant phylum, followed by Actinomycetota and Bacteroidota. Results furthermore indicated shifts from sacrifice to cold rooms, with an increase in Gammaproteobacteria, particularly Moraxellaceae (represented by Psychrobacter cryohalolentis) over Acinetobacter sp. In conclusion, this study highlights the potential of HLE disinfectant (alone or in combination with the routine disinfectant) as a more effective disinfection measure on environmental surfaces, particularly for combating multi-drug resistant pathogens compared to other disinfection methods currently used.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Research in Microbial Sciences
Current Research in Microbial Sciences Immunology and Microbiology-Immunology and Microbiology (miscellaneous)
CiteScore
7.90
自引率
0.00%
发文量
81
审稿时长
66 days
期刊最新文献
Human microbiome in post-acute COVID-19 syndrome (PACS) Multifaceted virus-like particles: Navigating towards broadly effective influenza A virus vaccines Evaluation and identification of metabolites produced by Cytobacillus firmus in the interaction with Arabidopsis thaliana plants and their effect on Solanum lycopersicum Antibacterial potential and phytochemical analysis of two ethnomedicinally important plants The role of universal stress protein Usp1413 in meropenem adaptive resistance and environmental stress responses in Acinetobacter baumannii
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1