Deciphering Abbreviations in Malaysian Clinical Notes Using Machine Learning.

IF 1.3 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Methods of Information in Medicine Pub Date : 2025-02-11 DOI:10.1055/a-2521-4372
Ismat Mohd Sulaiman, Awang Bulgiba, Sameem Abdul Kareem, Abdul Aziz Latip
{"title":"Deciphering Abbreviations in Malaysian Clinical Notes Using Machine Learning.","authors":"Ismat Mohd Sulaiman, Awang Bulgiba, Sameem Abdul Kareem, Abdul Aziz Latip","doi":"10.1055/a-2521-4372","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong> This is the first Malaysian machine learning model to detect and disambiguate abbreviations in clinical notes. The model has been designed to be incorporated into MyHarmony, a natural language processing system, that extracts clinical information for health care management. The model utilizes word embedding to ensure feasibility of use, not in real-time but for secondary analysis, within the constraints of low-resource settings.</p><p><strong>Methods: </strong> A Malaysian clinical embedding, based on Word2Vec model, was developed using 29,895 electronic discharge summaries. The embedding was compared against conventional rule-based and FastText embedding on two tasks: abbreviation detection and abbreviation disambiguation. Machine learning classifiers were applied to assess performance.</p><p><strong>Results: </strong> The Malaysian clinical word embedding contained 7 million word tokens, 24,352 unique vocabularies, and 100 dimensions. For abbreviation detection, the Decision Tree classifier augmented with the Malaysian clinical embedding showed the best performance (F-score of 0.9519). For abbreviation disambiguation, the classifier with the Malaysian clinical embedding had the best performance for most of the abbreviations (F-score of 0.9903).</p><p><strong>Conclusion: </strong> Despite having a smaller vocabulary and dimension, our local clinical word embedding performed better than the larger nonclinical FastText embedding. Word embedding with simple machine learning algorithms can decipher abbreviations well. It also requires lower computational resources and is suitable for implementation in low-resource settings such as Malaysia. The integration of this model into MyHarmony will improve recognition of clinical terms, thus improving the information generated for monitoring Malaysian health care services and policymaking.</p>","PeriodicalId":49822,"journal":{"name":"Methods of Information in Medicine","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods of Information in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2521-4372","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective:  This is the first Malaysian machine learning model to detect and disambiguate abbreviations in clinical notes. The model has been designed to be incorporated into MyHarmony, a natural language processing system, that extracts clinical information for health care management. The model utilizes word embedding to ensure feasibility of use, not in real-time but for secondary analysis, within the constraints of low-resource settings.

Methods:  A Malaysian clinical embedding, based on Word2Vec model, was developed using 29,895 electronic discharge summaries. The embedding was compared against conventional rule-based and FastText embedding on two tasks: abbreviation detection and abbreviation disambiguation. Machine learning classifiers were applied to assess performance.

Results:  The Malaysian clinical word embedding contained 7 million word tokens, 24,352 unique vocabularies, and 100 dimensions. For abbreviation detection, the Decision Tree classifier augmented with the Malaysian clinical embedding showed the best performance (F-score of 0.9519). For abbreviation disambiguation, the classifier with the Malaysian clinical embedding had the best performance for most of the abbreviations (F-score of 0.9903).

Conclusion:  Despite having a smaller vocabulary and dimension, our local clinical word embedding performed better than the larger nonclinical FastText embedding. Word embedding with simple machine learning algorithms can decipher abbreviations well. It also requires lower computational resources and is suitable for implementation in low-resource settings such as Malaysia. The integration of this model into MyHarmony will improve recognition of clinical terms, thus improving the information generated for monitoring Malaysian health care services and policymaking.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods of Information in Medicine
Methods of Information in Medicine 医学-计算机:信息系统
CiteScore
3.70
自引率
11.80%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Good medicine and good healthcare demand good information. Since the journal''s founding in 1962, Methods of Information in Medicine has stressed the methodology and scientific fundamentals of organizing, representing and analyzing data, information and knowledge in biomedicine and health care. Covering publications in the fields of biomedical and health informatics, medical biometry, and epidemiology, the journal publishes original papers, reviews, reports, opinion papers, editorials, and letters to the editor. From time to time, the journal publishes articles on particular focus themes as part of a journal''s issue.
期刊最新文献
Deciphering Abbreviations in Malaysian Clinical Notes Using Machine Learning. The Significance of Information Quality for the Secondary Use of the Information in the National Health Care Quality Registers in Finland. Leveraging Guideline-Based Clinical Decision Support Systems with Large Language Models: A Case Study with Breast Cancer. Cross-lingual Natural Language Processing on Limited Annotated Case/Radiology Reports in English and Japanese: Insights from the Real-MedNLP Workshop. Artificial Intelligence-Based Prediction of Contrast Medium Doses for Computed Tomography Angiography Using Optimized Clinical Parameter Sets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1