ENHANCING TRANSCRANIAL FOCUSED ULTRASOUND TREATMENT PLANNING WITH SYNTHETIC CT FROM ULTRA-SHORT ECHO TIME (UTE) MRI: A MULTI-TASK DEEP LEARNING APPROACH.

Dong Liu, Zhuoyao Xin, Robin Ji, Fotis Tsitsos, Sergio Jiménez-Gambín, Elisa E Konofagou, Vincent P Ferrera, Jia Guo
{"title":"ENHANCING TRANSCRANIAL FOCUSED ULTRASOUND TREATMENT PLANNING WITH SYNTHETIC CT FROM ULTRA-SHORT ECHO TIME (UTE) MRI: A MULTI-TASK DEEP LEARNING APPROACH.","authors":"Dong Liu, Zhuoyao Xin, Robin Ji, Fotis Tsitsos, Sergio Jiménez-Gambín, Elisa E Konofagou, Vincent P Ferrera, Jia Guo","doi":"10.1109/isbi56570.2024.10635176","DOIUrl":null,"url":null,"abstract":"<p><p>Utilizing a multi-task deep learning framework, this study generated synthetic CT (sCT) images from a limited dataset of Ultrashort echo time (UTE) MRI for transcranial focused ultrasound (tFUS) planning. A 3D Transformer U-Net was employed to produce sCT images that closely replicated actual CT scans, demonstrated by an average Dice coefficient of 0.868 for morphological accuracy. The acoustic simulation with sCT images showed mean focus absolute pressure differences of 8.85±7.29 % for the anterior cingulate cortex, 11.81±8.63 % for the precuneus, and 7.27±3.64 % for the supplemental motor cortex, with focus position discrepancies within 0.9±0.5 mm. These results underscore the efficacy of UTE-MRI as a non-radiative, cost-effective alternative for tFUS planning, with significant potential for clinical application.</p>","PeriodicalId":74566,"journal":{"name":"Proceedings. IEEE International Symposium on Biomedical Imaging","volume":"2024 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753620/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/isbi56570.2024.10635176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing a multi-task deep learning framework, this study generated synthetic CT (sCT) images from a limited dataset of Ultrashort echo time (UTE) MRI for transcranial focused ultrasound (tFUS) planning. A 3D Transformer U-Net was employed to produce sCT images that closely replicated actual CT scans, demonstrated by an average Dice coefficient of 0.868 for morphological accuracy. The acoustic simulation with sCT images showed mean focus absolute pressure differences of 8.85±7.29 % for the anterior cingulate cortex, 11.81±8.63 % for the precuneus, and 7.27±3.64 % for the supplemental motor cortex, with focus position discrepancies within 0.9±0.5 mm. These results underscore the efficacy of UTE-MRI as a non-radiative, cost-effective alternative for tFUS planning, with significant potential for clinical application.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blood Harmonisation of Endoscopic Transsphenoidal Surgical Video Frames on Phantom Models. DART: DEFORMABLE ANATOMY-AWARE REGISTRATION TOOLKIT FOR LUNG CT REGISTRATION WITH KEYPOINTS SUPERVISION. ROBUST QUANTIFICATION OF PERCENT EMPHYSEMA ON CT VIA DOMAIN ATTENTION: THE MULTI-ETHNIC STUDY OF ATHEROSCLEROSIS (MESA) LUNG STUDY. SIFT-DBT: SELF-SUPERVISED INITIALIZATION AND FINE-TUNING FOR IMBALANCED DIGITAL BREAST TOMOSYNTHESIS IMAGE CLASSIFICATION. QUANTIFYING HIPPOCAMPAL SHAPE ASYMMETRY IN ALZHEIMER'S DISEASE USING OPTIMAL SHAPE CORRESPONDENCES.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1