{"title":"Predictive models are indeed useful for causal inference","authors":"James D. Nichols, Evan G. Cooch","doi":"10.1002/ecy.4517","DOIUrl":null,"url":null,"abstract":"<p>The subject of investigating causation in ecology has been widely discussed in recent years, especially by advocates of a structural causal model (SCM) approach. Some of these advocates have criticized the use of predictive models and model selection for drawing inferences about causation. We argue that the comparison of model-based predictions with observations is a key step in hypothetico-deductive (H-D) science and remains a valid approach for assessing causation. We draw a distinction between two approaches to inference based on predictive modeling. The first approach is not guided by causal hypotheses and focuses on the relationship between a (typically) single response variable and a potentially large number of covariates. We agree that this approach does not yield useful inferences about causation and is primarily useful for hypothesis generation. The second approach follows a H-D framework and is guided by specific hypotheses about causal relationships. We believe that this has been, and continues to be, a useful approach to causal inference. Here, we first define different kinds of causation, arguing that a “probability-raisers-of-processes” definition is especially appropriate for many ecological systems. We outline different scientific “designs” for generating the observations used to investigate causation. We briefly outline some relevant components of the SCM and H-D approaches to investigating causation, emphasizing a H-D approach that focuses on modeling causal effects on vital rate (e.g., rates of survival, recruitment, local extinction, colonization) parameters underlying system dynamics. We consider criticisms of predictive modeling leveled by some SCM proponents and provide two example analyses of ecological systems that use predictive modeling and avoid these criticisms. We conclude that predictive models have been, and can continue to be, useful for providing inferences about causation.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"106 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecy.4517","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The subject of investigating causation in ecology has been widely discussed in recent years, especially by advocates of a structural causal model (SCM) approach. Some of these advocates have criticized the use of predictive models and model selection for drawing inferences about causation. We argue that the comparison of model-based predictions with observations is a key step in hypothetico-deductive (H-D) science and remains a valid approach for assessing causation. We draw a distinction between two approaches to inference based on predictive modeling. The first approach is not guided by causal hypotheses and focuses on the relationship between a (typically) single response variable and a potentially large number of covariates. We agree that this approach does not yield useful inferences about causation and is primarily useful for hypothesis generation. The second approach follows a H-D framework and is guided by specific hypotheses about causal relationships. We believe that this has been, and continues to be, a useful approach to causal inference. Here, we first define different kinds of causation, arguing that a “probability-raisers-of-processes” definition is especially appropriate for many ecological systems. We outline different scientific “designs” for generating the observations used to investigate causation. We briefly outline some relevant components of the SCM and H-D approaches to investigating causation, emphasizing a H-D approach that focuses on modeling causal effects on vital rate (e.g., rates of survival, recruitment, local extinction, colonization) parameters underlying system dynamics. We consider criticisms of predictive modeling leveled by some SCM proponents and provide two example analyses of ecological systems that use predictive modeling and avoid these criticisms. We conclude that predictive models have been, and can continue to be, useful for providing inferences about causation.
期刊介绍:
Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.