Xi-Zheng Fan, Jing-Peng Hu, Xin Du, Zhong-Yi Liu, Xin-Zheng Yue
{"title":"Sulphur anion induced electronic structure regulation of RuO2 nanodots for efficient electrocatalytic overall water splitting","authors":"Xi-Zheng Fan, Jing-Peng Hu, Xin Du, Zhong-Yi Liu, Xin-Zheng Yue","doi":"10.1016/j.jmst.2024.11.074","DOIUrl":null,"url":null,"abstract":"Developing bifunctional electrocatalysts with enhanced efficiency for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) remains a significant challenge. Herein, we constructed S-doped ultra-fine RuO<sub>2</sub> nanodots that were uniformly dispersed on carbon nanotubes. The incorporation of S effectively induces local rearrangement of the electronic structure of RuO<sub>2</sub>, thereby enhancing the dispersion of RuO<sub>2</sub> as active sites and optimizing the adsorption free energy of H* intermediate. As expected, the as-synthesized S-RuO<sub>2</sub>/CNT delivers remarkable HER activity in all pH electrolytes, achieving lower overpotentials of 136, 159, and 396 mV at 100 mA cm<sup>−2</sup> in acidic, neutral, and basic solutions, respectively. Moreover, a unitary S-RuO<sub>2</sub>/CNT electrolytic cell requires only a lower voltage (1.476 V) to achieve a current density of 10 mA cm<sup>−2</sup> in 1.0 mol/L KOH. This ingenious work represents a significant breakthrough in the rational design of bifunctional electrocatalysts, enabling remarkable performance in electrochemical water electrolysis.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"34 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.11.074","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing bifunctional electrocatalysts with enhanced efficiency for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) remains a significant challenge. Herein, we constructed S-doped ultra-fine RuO2 nanodots that were uniformly dispersed on carbon nanotubes. The incorporation of S effectively induces local rearrangement of the electronic structure of RuO2, thereby enhancing the dispersion of RuO2 as active sites and optimizing the adsorption free energy of H* intermediate. As expected, the as-synthesized S-RuO2/CNT delivers remarkable HER activity in all pH electrolytes, achieving lower overpotentials of 136, 159, and 396 mV at 100 mA cm−2 in acidic, neutral, and basic solutions, respectively. Moreover, a unitary S-RuO2/CNT electrolytic cell requires only a lower voltage (1.476 V) to achieve a current density of 10 mA cm−2 in 1.0 mol/L KOH. This ingenious work represents a significant breakthrough in the rational design of bifunctional electrocatalysts, enabling remarkable performance in electrochemical water electrolysis.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.