Regulating the growth process of FAU zeolite via quantum dots for enhanced CO2/N2 separation

IF 8.1 1区 工程技术 Q1 ENGINEERING, CHEMICAL Separation and Purification Technology Pub Date : 2025-01-23 DOI:10.1016/j.seppur.2025.131787
Yang Hong, Yan Zhou, Jiaqi Chen, linqian Qin, Yongqi Li, Yang Li, Hongyan Jiang, Huiyang Zhao, Jinzhu Wu, Xiaohong Wu
{"title":"Regulating the growth process of FAU zeolite via quantum dots for enhanced CO2/N2 separation","authors":"Yang Hong, Yan Zhou, Jiaqi Chen, linqian Qin, Yongqi Li, Yang Li, Hongyan Jiang, Huiyang Zhao, Jinzhu Wu, Xiaohong Wu","doi":"10.1016/j.seppur.2025.131787","DOIUrl":null,"url":null,"abstract":"Advances in carbon capture and storage (CCS) technologies are critical for mitigating global climate change due to their low cost and operational simplicity. Although zeolites hold promise for carbon capture, the development of advanced zeolite materials with optimized CO<sub>2</sub> separation efficiency and diffusivity remains challenging. In this study, we present a quantum dot-regulated growth strategy, in which silicon quantum dots (SiQDs) act as heterogeneous seeds to not only initiate the growth of nanoscale zeolite units but also guide their assembly. The resulting 13X-SiQDs exhibit a distinct micrometer-scale hollow sphere structure composed of nanoscale zeolite units, which provide additional adsorption sites and mesopores, significantly enhancing adsorption and diffusion. The amino groups on the surface of the SiQDs further enable chemical adsorption with CO<sub>2</sub>, strengthening the binding force. The synergistic combination of thermodynamic and kinetic advantages enables 13X-SiQDs to achieve substantial improvements in CO<sub>2</sub> adsorption capacity (132.20 cm<sup>3</sup>·g<sup>−1</sup>), CO<sub>2</sub>/N<sub>2</sub> selectivity (561), and diffusion rate. This quantum dot-regulated synthesis strategy offers a promising approach for designing advanced adsorption materials with high performance, extending their potential applications beyond carbon capture.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"25 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.131787","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in carbon capture and storage (CCS) technologies are critical for mitigating global climate change due to their low cost and operational simplicity. Although zeolites hold promise for carbon capture, the development of advanced zeolite materials with optimized CO2 separation efficiency and diffusivity remains challenging. In this study, we present a quantum dot-regulated growth strategy, in which silicon quantum dots (SiQDs) act as heterogeneous seeds to not only initiate the growth of nanoscale zeolite units but also guide their assembly. The resulting 13X-SiQDs exhibit a distinct micrometer-scale hollow sphere structure composed of nanoscale zeolite units, which provide additional adsorption sites and mesopores, significantly enhancing adsorption and diffusion. The amino groups on the surface of the SiQDs further enable chemical adsorption with CO2, strengthening the binding force. The synergistic combination of thermodynamic and kinetic advantages enables 13X-SiQDs to achieve substantial improvements in CO2 adsorption capacity (132.20 cm3·g−1), CO2/N2 selectivity (561), and diffusion rate. This quantum dot-regulated synthesis strategy offers a promising approach for designing advanced adsorption materials with high performance, extending their potential applications beyond carbon capture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
期刊最新文献
Dual-driven charge transport enabled by S-scheme heterojunction and solid solution in CdS@N-NiCoO photocatalysts for enhanced hydrogen evolution Extracting metallic lithium and separating diffusion pump oil from lithium slag using a novel negative pressure distillation technology Additive promoted supported mixed amines on mesoporous silica for cyclic capture of carbon dioxide A conical array water evaporator with anti-biofouling, salt-rejecting and anti-polyelectrolyte effect for efficient solar energy-driven seawater desalination Permanganate pretreatment Improves the production of short chain fatty acids from waste activated sludge at pH10: Performance and mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1