Yazhou Wang, Kumar K. Tamma, Dean J. Maxam, Tao Xue
{"title":"On a holistic investigation of implicit/explicit/semi-implicit GS4-I framework and time step control for unsteady fluid dynamics","authors":"Yazhou Wang, Kumar K. Tamma, Dean J. Maxam, Tao Xue","doi":"10.1108/hff-07-2024-0547","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper aims to design and analyze implicit/explicit/semi-implicit schemes and a universal error estimator within the Generalized Single-step Single-Solve computational framework for First-order transient systems (GS4-I), which also fosters the adaptive time-stepping procedure to improve stability, accuracy and efficiency applied for fluid dynamics.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The newly proposed child-explicit and semi-implicit schemes emanate from the parent implicit GS4-I framework, providing numerous options with flexible and controllable numerical properties to the analyst. A universal error estimator is developed based on the consistent algorithmic variables and it works for all the developed methods. Applications are demonstrated by merging the developed algorithms into the iterated pressure-projection method for incompressible Navier–Stokes equations.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The child-explicit GS4-I has improved solution accuracy and stability properties, and the most stable option is the child explicit GS4-I(0,0)/second-order backward differentiation formula/Gear’s methods, which is new and novel. Numerical tests validate that the universal error estimator emanating from implicit designs works well for the newly proposed explicit/semi-implicit algorithms. The iterative pressure-correction projection algorithm is efficiently fostered by the error estimator-based adaptive time-stepping.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The implicit/explicit/semi-implicit methods within a unified computational framework are easy to implement and have flexible options in practical applications. In contrast to traditional error estimators, which work only on an algorithm-by-algorithm basis, the proposed error estimator is universal. They work for the entire class of implicit/explicit/semi-implicit linear multi-step methods that are second-order time accurate. Based on the accurately estimated local error, balance amongst stability, accuracy and efficiency can be well achieved in the dynamic simulation.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"22 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-07-2024-0547","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This paper aims to design and analyze implicit/explicit/semi-implicit schemes and a universal error estimator within the Generalized Single-step Single-Solve computational framework for First-order transient systems (GS4-I), which also fosters the adaptive time-stepping procedure to improve stability, accuracy and efficiency applied for fluid dynamics.
Design/methodology/approach
The newly proposed child-explicit and semi-implicit schemes emanate from the parent implicit GS4-I framework, providing numerous options with flexible and controllable numerical properties to the analyst. A universal error estimator is developed based on the consistent algorithmic variables and it works for all the developed methods. Applications are demonstrated by merging the developed algorithms into the iterated pressure-projection method for incompressible Navier–Stokes equations.
Findings
The child-explicit GS4-I has improved solution accuracy and stability properties, and the most stable option is the child explicit GS4-I(0,0)/second-order backward differentiation formula/Gear’s methods, which is new and novel. Numerical tests validate that the universal error estimator emanating from implicit designs works well for the newly proposed explicit/semi-implicit algorithms. The iterative pressure-correction projection algorithm is efficiently fostered by the error estimator-based adaptive time-stepping.
Originality/value
The implicit/explicit/semi-implicit methods within a unified computational framework are easy to implement and have flexible options in practical applications. In contrast to traditional error estimators, which work only on an algorithm-by-algorithm basis, the proposed error estimator is universal. They work for the entire class of implicit/explicit/semi-implicit linear multi-step methods that are second-order time accurate. Based on the accurately estimated local error, balance amongst stability, accuracy and efficiency can be well achieved in the dynamic simulation.
期刊介绍:
The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf