Changing amyloid nucleation process by small molecule and substrate: a way to build two-dimensional materials

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2025-01-24 DOI:10.1039/d4nr04624b
Chao Chen, Chenyang Wu, Tiantian Yang, Wenhui Zhao, Jiangtao Lei, Dongdong Lin
{"title":"Changing amyloid nucleation process by small molecule and substrate: a way to build two-dimensional materials","authors":"Chao Chen, Chenyang Wu, Tiantian Yang, Wenhui Zhao, Jiangtao Lei, Dongdong Lin","doi":"10.1039/d4nr04624b","DOIUrl":null,"url":null,"abstract":"The assembly of two-dimensional (2D) materials on substrates presents a wide range of potential applications in nanomaterials. However, the tunable nucleation process in molecular assembly is less information available in the literature. In this paper, a neurodegenerative disease-related short peptide and a small molecule named Fast Green (FG) were selected for their binding affinity with mica / highly oriented pyrolytic graphite (HOPG) substrates. Based on atomic force microscopy (AFM) and molecular dynamics (MD) simulation, we investigated the control of 2D assemblies. With the tuning of FG small molecules and substrates, the assemblies grew epitaxially from nanosheets to nanofilms on mica and highly ordered nanofilaments on HOPG substrates. Notably, the nuclei formed in an orderly array without a critical size or lag phase in the presence of FG molecules on the HOPG substrate, facilitating a quicker co-assembly of ordered filaments compared to bulk conditions. Our MD simulations further demonstrated that the interaction between Aβ16-22 molecules and HOPG substrate was primarily due to π-π interactions between aromatic rings, which led to the formation of single-layer filaments by lying on the surface of HOPG. Additionally, parallel π-π stacking acted as the primary force to inhibit the aggregation of peptides into fibrils. Overall, our results provide a strategy for modulating the interaction of amyloid peptides with small molecules and substrates in the assembly of 2D nanomaterials.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"51 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr04624b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The assembly of two-dimensional (2D) materials on substrates presents a wide range of potential applications in nanomaterials. However, the tunable nucleation process in molecular assembly is less information available in the literature. In this paper, a neurodegenerative disease-related short peptide and a small molecule named Fast Green (FG) were selected for their binding affinity with mica / highly oriented pyrolytic graphite (HOPG) substrates. Based on atomic force microscopy (AFM) and molecular dynamics (MD) simulation, we investigated the control of 2D assemblies. With the tuning of FG small molecules and substrates, the assemblies grew epitaxially from nanosheets to nanofilms on mica and highly ordered nanofilaments on HOPG substrates. Notably, the nuclei formed in an orderly array without a critical size or lag phase in the presence of FG molecules on the HOPG substrate, facilitating a quicker co-assembly of ordered filaments compared to bulk conditions. Our MD simulations further demonstrated that the interaction between Aβ16-22 molecules and HOPG substrate was primarily due to π-π interactions between aromatic rings, which led to the formation of single-layer filaments by lying on the surface of HOPG. Additionally, parallel π-π stacking acted as the primary force to inhibit the aggregation of peptides into fibrils. Overall, our results provide a strategy for modulating the interaction of amyloid peptides with small molecules and substrates in the assembly of 2D nanomaterials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
Atomistic modelling of electron beam induced structural transformations in deposited metal clusters Spacer engineering in nanoparticle–peptide conjugates boosts targeting specificity for tumor-associated antigens Nanofiber-shaped Co3O4@In2O3 composite for high-performance enzymeless glucose sensing Hollow gold–platinum nanoshells as a delivery platform for Ce6: cascading catalysis for enhanced multimodal therapy in tumor ablation and antitumor immunity Gold nanozymes for efficient degradation of organic dye pollutants: outperforming natural enzymes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1