{"title":"Highly Resistive Semitransparent G–aSi–ITO Photodetectors with Graded Energy Band Gaps","authors":"Jiyoun Jeong, Minho Choi, Jaewu Choi","doi":"10.1021/acsphotonics.4c01562","DOIUrl":null,"url":null,"abstract":"Nonhydrogenated, undoped semitransparent amorphous silicon thin films exhibit a thickness-dependent Tauc optical energy band gap and form uniquely highly resistive devices with a graded energy band gap. When combined with optically transparent, electrically conductive, and flexible graphene, these highly resistive semitransparent amorphous silicon films with graded energy band gaps offer significant potential for the development of graphene (G)–amorphous silicon (aSi: nonhydrogenated and undoped)–indium tin oxide (ITO) photodetector arrays fabricated on glass. These arrays are promising for future semitransparent optoelectronic applications, such as sensors in displays and see-through or video-through augmented reality (AR)/virtual reality (VR) glasses. Notably, these structures exhibit unique junction characteristics, with the Fermi level pinned at bulk defect states, as well as distinctive photoresponse properties.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"13 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01562","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nonhydrogenated, undoped semitransparent amorphous silicon thin films exhibit a thickness-dependent Tauc optical energy band gap and form uniquely highly resistive devices with a graded energy band gap. When combined with optically transparent, electrically conductive, and flexible graphene, these highly resistive semitransparent amorphous silicon films with graded energy band gaps offer significant potential for the development of graphene (G)–amorphous silicon (aSi: nonhydrogenated and undoped)–indium tin oxide (ITO) photodetector arrays fabricated on glass. These arrays are promising for future semitransparent optoelectronic applications, such as sensors in displays and see-through or video-through augmented reality (AR)/virtual reality (VR) glasses. Notably, these structures exhibit unique junction characteristics, with the Fermi level pinned at bulk defect states, as well as distinctive photoresponse properties.
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.