Xinli Ye , Yuxin Zhang , Jianqing Xu , Shan Li , Xiaomin Ma , Linglin Cao , Junxiong Zhang , Xiaohua Zhang , Kai Zheng
{"title":"Synergistic enhancement of radar wave absorption in SiC/Al2O3 composites via structural tuning, composition optimization, and unit design","authors":"Xinli Ye , Yuxin Zhang , Jianqing Xu , Shan Li , Xiaomin Ma , Linglin Cao , Junxiong Zhang , Xiaohua Zhang , Kai Zheng","doi":"10.1016/j.mtphys.2025.101662","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the limitations in structure and loss mechanisms, achieving both excellent reflection loss and broadband electromagnetic absorption simultaneously has been challenging for SiC-based materials. In this study, an innovative approach was adopted to fabricate Al<sub>2</sub>O<sub>3</sub>-modified SiC (SiC/Al<sub>2</sub>O<sub>3</sub>) ceramic matrix composites by polymer impregnation and pyrolysis method, and oxidation of a carbon framework. Through structural engineering, the introduction of Al<sub>2</sub>O<sub>3</sub> phase established different loss mechanisms, such as dielectric loss and conductive loss. During the X-band (8.20–12.40 GHz), the resulting composite achieved a minimum reflection loss (RL<sub>min</sub>) of −50.52 dB at a thickness of 2.20 mm, with an effective absorption bandwidth (EAB) of just 2.28 GHz. Building upon this foundation, two different periodic metamaterial structures were designed to optimize the electromagnetic absorption performance of the SiC/Al<sub>2</sub>O<sub>3</sub> composite. By employing a multi-scale design strategy, significant improvements in both RL<sub>min</sub> and EAB were achieved innovatively. The cross-shaped structure achieved efficient absorption across a frequency range of 8.20–12.40 GHz, reaching an RL<sub>min</sub> of −78.69 dB and an EAB of 3.32 GHz at a total thickness of 2.80 mm. This research provides a novel approach for designing advanced SiC-based metamaterials with excellent radar stealth performance in the X-band.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"51 ","pages":"Article 101662"},"PeriodicalIF":10.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000185","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the limitations in structure and loss mechanisms, achieving both excellent reflection loss and broadband electromagnetic absorption simultaneously has been challenging for SiC-based materials. In this study, an innovative approach was adopted to fabricate Al2O3-modified SiC (SiC/Al2O3) ceramic matrix composites by polymer impregnation and pyrolysis method, and oxidation of a carbon framework. Through structural engineering, the introduction of Al2O3 phase established different loss mechanisms, such as dielectric loss and conductive loss. During the X-band (8.20–12.40 GHz), the resulting composite achieved a minimum reflection loss (RLmin) of −50.52 dB at a thickness of 2.20 mm, with an effective absorption bandwidth (EAB) of just 2.28 GHz. Building upon this foundation, two different periodic metamaterial structures were designed to optimize the electromagnetic absorption performance of the SiC/Al2O3 composite. By employing a multi-scale design strategy, significant improvements in both RLmin and EAB were achieved innovatively. The cross-shaped structure achieved efficient absorption across a frequency range of 8.20–12.40 GHz, reaching an RLmin of −78.69 dB and an EAB of 3.32 GHz at a total thickness of 2.80 mm. This research provides a novel approach for designing advanced SiC-based metamaterials with excellent radar stealth performance in the X-band.
期刊介绍:
Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.