Design and regulation of electromagnetic parameters of THz absorbing epoxy resin composite film for 6G electronic packaging

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2025-02-01 DOI:10.1016/j.mtphys.2025.101655
Yunbo Guo , Zhuo Wang , Siyi Bi , Qi Sun , Yinxiang Lu
{"title":"Design and regulation of electromagnetic parameters of THz absorbing epoxy resin composite film for 6G electronic packaging","authors":"Yunbo Guo ,&nbsp;Zhuo Wang ,&nbsp;Siyi Bi ,&nbsp;Qi Sun ,&nbsp;Yinxiang Lu","doi":"10.1016/j.mtphys.2025.101655","DOIUrl":null,"url":null,"abstract":"<div><div>Flexible electrically insulating packaging materials with high absorption performance are urgently indispensable in the wide applications for 6G electronic devices. Herein, direct modification of KH550 and low-filler loading of mSiO₂ are proposed to construct enhanced epoxy resin (EP) composite film. The resultant EP-F sample achieves an average total shielding effectiveness (SE<sub>T</sub>) of 15.11 dB (0.2–2.5 THz) at a thickness of 1 mm, representing a 142 % improvement over the EP sample. At a thickness of 1.8 mm, EP-F exhibits effective THz wave absorption across 0.5–2.5 THz frequency range, with an average reflection loss (RL) value of −14 dB. The dielectric behavior and THz wave absorption of the KH550- and mSiO₂-modified EP samples were analyzed through dielectric constant spectra and Cole-Cole plots for the first time, elucidating the distinction and relationship between microwave-like polarization and infrared-like absorption mechanisms in polar dielectric polymer materials within the THz range. Moreover, the EP-F sample exhibits enhanced mechanical properties and thermal stability, with a volume resistivity of 8.75 × 10<sup>12</sup> Ω cm and a breakdown field strength of 37.59 kV/mm. Finally, the potential application of EP-F in practical THz circuit board packaging was demonstrated through Finite difference time domain (FDTD) simulation modeling. The enhanced epoxy resin material demonstrates enormous promise for in-situ shielding and packaging of THz devices, fabrication of efficient wave-absorbing layers, and various future applications.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"51 ","pages":"Article 101655"},"PeriodicalIF":10.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000112","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible electrically insulating packaging materials with high absorption performance are urgently indispensable in the wide applications for 6G electronic devices. Herein, direct modification of KH550 and low-filler loading of mSiO₂ are proposed to construct enhanced epoxy resin (EP) composite film. The resultant EP-F sample achieves an average total shielding effectiveness (SET) of 15.11 dB (0.2–2.5 THz) at a thickness of 1 mm, representing a 142 % improvement over the EP sample. At a thickness of 1.8 mm, EP-F exhibits effective THz wave absorption across 0.5–2.5 THz frequency range, with an average reflection loss (RL) value of −14 dB. The dielectric behavior and THz wave absorption of the KH550- and mSiO₂-modified EP samples were analyzed through dielectric constant spectra and Cole-Cole plots for the first time, elucidating the distinction and relationship between microwave-like polarization and infrared-like absorption mechanisms in polar dielectric polymer materials within the THz range. Moreover, the EP-F sample exhibits enhanced mechanical properties and thermal stability, with a volume resistivity of 8.75 × 1012 Ω cm and a breakdown field strength of 37.59 kV/mm. Finally, the potential application of EP-F in practical THz circuit board packaging was demonstrated through Finite difference time domain (FDTD) simulation modeling. The enhanced epoxy resin material demonstrates enormous promise for in-situ shielding and packaging of THz devices, fabrication of efficient wave-absorbing layers, and various future applications.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
MXene Nb2C/MoS2 heterostructure: Nonlinear optical properties and a new broadband saturable absorber for ultrafast photonics Low-temperature annealing induces superior shock-resistant performance in FeCoCrNiCu high-entropy alloy Effectively Tuning Phonon Transport across Al/nonmetal Interfaces through Controlling Interfacial Bonding Strength without Modifying Thermal Conductivity Vacancy regulation to achieve N-type high thermoelectric performance PbSe through titanium-incorporation Crystalline FeOCl as a novel saturable absorber for broadband ultrafast photonic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1