Seasonal Mineralisation of Organic Matter in Alpine Soils and Responses to Global Warming: An In Vitro Approach

IF 4 2区 农林科学 Q2 SOIL SCIENCE European Journal of Soil Science Pub Date : 2025-01-22 DOI:10.1111/ejss.70050
Nicolas Bonfanti, Jean-Christophe Clement, Annie Millery-Vigues, Tamara Münkemüller, Yves Perrette, Jérôme Poulenard
{"title":"Seasonal Mineralisation of Organic Matter in Alpine Soils and Responses to Global Warming: An In Vitro Approach","authors":"Nicolas Bonfanti,&nbsp;Jean-Christophe Clement,&nbsp;Annie Millery-Vigues,&nbsp;Tamara Münkemüller,&nbsp;Yves Perrette,&nbsp;Jérôme Poulenard","doi":"10.1111/ejss.70050","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Mountains are particularly vulnerable to climate change, as they are warming at a rate that exceeds the global average, significantly impacting cold-adapted ecosystems. In these environments, soil organic matter (SOM) stocks are often considerably larger than at lower elevations. These stocks are therefore highly susceptible to global warming and the associated risk of greenhouse gas (GHG) (CO₂, CH₄, N₂O) emissions driven by temperature-induced increases in SOM mineralisation. In order to quantify these emissions and the change of mineralisation rates under warming, it is necessary to gain an understanding of the annual mineralisation balance. We investigated how warming impacts the duration and intensity of mineralisation in different seasons. The main aim of this study is to quantify alpine SOM mineralisation rates and GHG production under a range of seasonal conditions, including those associated with warming. An in vitro approach was employed to expose alpine topsoils (0–10 cm) to the conditions of key seasonal periods: snow cover, growing season and rainfall/snowmelt. This was achieved by experimentally varying temperature and inflow of precipitation water. Additionally, the soil samples were subjected to a temperature increase of 4°C. The short-term responses of carbon (C), nitrogen (N) and phosphorus (P) mineralisation and GHG production were monitored. The results demonstrated that alpine soil respiration rates exhibited a twofold increase with a 4°C warming, while the relative proportion of labile SOM demonstrated a decline with rising temperatures. Water saturation from simulated rain and snowmelt played a crucial role in organic matter mineralisation and increased the mineralisation of carbon (+12% to +53%), nitrogen (+20% to +80% of net ammonification) and phosphorus (+50% of net phosphate production). This suggests that nutrients present in the snowpack or the rain were added to the soil. In contrast, soil–water saturation decreased net nitrate production by between 10% and 90%. The results of this study highlight the potential for alpine soil warming to release labile SOM and demonstrate the influence of the snow regime on nutrient and carbon fluxes.</p>\n </div>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"76 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejss.70050","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Mountains are particularly vulnerable to climate change, as they are warming at a rate that exceeds the global average, significantly impacting cold-adapted ecosystems. In these environments, soil organic matter (SOM) stocks are often considerably larger than at lower elevations. These stocks are therefore highly susceptible to global warming and the associated risk of greenhouse gas (GHG) (CO₂, CH₄, N₂O) emissions driven by temperature-induced increases in SOM mineralisation. In order to quantify these emissions and the change of mineralisation rates under warming, it is necessary to gain an understanding of the annual mineralisation balance. We investigated how warming impacts the duration and intensity of mineralisation in different seasons. The main aim of this study is to quantify alpine SOM mineralisation rates and GHG production under a range of seasonal conditions, including those associated with warming. An in vitro approach was employed to expose alpine topsoils (0–10 cm) to the conditions of key seasonal periods: snow cover, growing season and rainfall/snowmelt. This was achieved by experimentally varying temperature and inflow of precipitation water. Additionally, the soil samples were subjected to a temperature increase of 4°C. The short-term responses of carbon (C), nitrogen (N) and phosphorus (P) mineralisation and GHG production were monitored. The results demonstrated that alpine soil respiration rates exhibited a twofold increase with a 4°C warming, while the relative proportion of labile SOM demonstrated a decline with rising temperatures. Water saturation from simulated rain and snowmelt played a crucial role in organic matter mineralisation and increased the mineralisation of carbon (+12% to +53%), nitrogen (+20% to +80% of net ammonification) and phosphorus (+50% of net phosphate production). This suggests that nutrients present in the snowpack or the rain were added to the soil. In contrast, soil–water saturation decreased net nitrate production by between 10% and 90%. The results of this study highlight the potential for alpine soil warming to release labile SOM and demonstrate the influence of the snow regime on nutrient and carbon fluxes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Soil Science
European Journal of Soil Science 农林科学-土壤科学
CiteScore
8.20
自引率
4.80%
发文量
117
审稿时长
5 months
期刊介绍: The EJSS is an international journal that publishes outstanding papers in soil science that advance the theoretical and mechanistic understanding of physical, chemical and biological processes and their interactions in soils acting from molecular to continental scales in natural and managed environments.
期刊最新文献
Effect of Elevation and Mineralogy on the Amount and Turnover of Fractionated Organic Carbon in Paddy Soils in Nepal Impact of Water Halinity on the Presence of Hypersulfidic Materials in Estuarine Tidal Marsh Soils, Chesapeake Bay (USA) Long-Term Application of No-Tillage-Induced Greater Risk of Poor Topsoil Aeration Along a European Pedoclimatic Gradient Correction to “The Stonesphere in Agricultural Soils: A Microhabitat Associated With Rock Fragments Bridging Rock and Soil” Editorial for the EJP SOIL Special Issue 1 on “Climate-Smart Sustainable Agricultural Soil Management for the Future”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1