Yingtao Zhou, Chenhui Jiang, Yuanshu Jiang, Yu Zhu, Yan Jin, Xian Wang, Xi Feng, Weibing Feng
{"title":"A whole process resilience management practice in coastal engineering","authors":"Yingtao Zhou, Chenhui Jiang, Yuanshu Jiang, Yu Zhu, Yan Jin, Xian Wang, Xi Feng, Weibing Feng","doi":"10.3389/fmars.2024.1518249","DOIUrl":null,"url":null,"abstract":"Coastal zones are crucial for protecting land from marine disasters, but they are increasingly threatened by erosion caused by storms and rising sea levels. Urban coastal resilience engineering is a multidisciplinary practice that seeks to enhance disaster prevention capabilities and resilience along urban coastlines. This process requires a comprehensive assessment based on the current conditions and regional characteristics, followed by tailored planning and design strategies. Previous research has mainly focused on individual coastline types, utilizing observations or numerical models for analysis. However, it often lacks a comprehensive approach that integrates planning, design, and assessment. This paper proposes a project life cycle management method for resilient coastal zone engineering, including design and construction within a layout planning framework. The proposed scheme incorporates small-scale numerical simulations for the evaluation and employs high-precision remote sensing data collected over different construction periods to assess the coastline’s transformations during the process of construction. Additionally, a hierarchical evaluation index system was established using the analytic hierarchy process to assess project outcomes after completion. The Haidian River-Haikou Bay Coastal Resilience Project serves as a case study and this study thoroughly evaluates the project’s impact on the vitality and resilience of the coastal zones. This research provides valuable insights and practical guidance for future coastal resilience restoration efforts in diverse urban contexts.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"12 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2024.1518249","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Coastal zones are crucial for protecting land from marine disasters, but they are increasingly threatened by erosion caused by storms and rising sea levels. Urban coastal resilience engineering is a multidisciplinary practice that seeks to enhance disaster prevention capabilities and resilience along urban coastlines. This process requires a comprehensive assessment based on the current conditions and regional characteristics, followed by tailored planning and design strategies. Previous research has mainly focused on individual coastline types, utilizing observations or numerical models for analysis. However, it often lacks a comprehensive approach that integrates planning, design, and assessment. This paper proposes a project life cycle management method for resilient coastal zone engineering, including design and construction within a layout planning framework. The proposed scheme incorporates small-scale numerical simulations for the evaluation and employs high-precision remote sensing data collected over different construction periods to assess the coastline’s transformations during the process of construction. Additionally, a hierarchical evaluation index system was established using the analytic hierarchy process to assess project outcomes after completion. The Haidian River-Haikou Bay Coastal Resilience Project serves as a case study and this study thoroughly evaluates the project’s impact on the vitality and resilience of the coastal zones. This research provides valuable insights and practical guidance for future coastal resilience restoration efforts in diverse urban contexts.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.