Artificial hummingbird algorithm: Theory, variants, analysis, applications, and performance evaluation

IF 13.3 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Computer Science Review Pub Date : 2025-01-18 DOI:10.1016/j.cosrev.2025.100727
Buddhadev Sasmal, Arunita Das, Krishna Gopal Dhal, Ramesh Saha, Rebika Rai, Totan Bharasa, Essam H. Houssein
{"title":"Artificial hummingbird algorithm: Theory, variants, analysis, applications, and performance evaluation","authors":"Buddhadev Sasmal, Arunita Das, Krishna Gopal Dhal, Ramesh Saha, Rebika Rai, Totan Bharasa, Essam H. Houssein","doi":"10.1016/j.cosrev.2025.100727","DOIUrl":null,"url":null,"abstract":"The Artificial Hummingbird Algorithm (AHA) is a metaheuristic optimization technique inspired by the behaviours and foraging strategies of hummingbirds. Known for their extraordinary agility and accuracy in collecting nectar, hummingbirds provide an exemplary framework for tackling complex optimization problems. Developed by Zhao et al. in 2022, AHA has swiftly attracted interest within the research community because to its exceptional performance and adaptability. This study provides a detailed and comprehensive review of AHA, exploring the diverse versions and modifications published in multiple research papers since its inception in 2022, with 23 % appearing in international conference papers and 75 % in esteemed peer-reviewed journals. The variants of AHA covered in this paper include 55 % of classical AHA, 17 % of improved AHA, 11 % of hybridization, 2 % of binary, 15 % of multi-objective variants, respectively. Furthermore, the applications of AHA illustrate its effectiveness and adaptability across various fields, with 42 % in power and control engineering, 11 % in optimizing deep learning models, 10 % in engineering design challenges, and 8 % in renewable energy sources. The algorithm has been utilized substantially in the domain of IoT, wireless sensor networks, wind energy, and fog computing. Furthermore, we also evaluate the performance of the AHA in the image clustering domain, and the findings revealed that the AHA performs better in comparison to the other tested methods. The main objectives of this study are to deliver a comprehensive review of AHA, emphasizing its novel methodology, and analyzing its various variants and their applications in numerous fields. As nature-inspired optimization methods continue to evolve, this survey paper expected to serves as a valuable resource for researchers aiming to gain a comprehensive understanding of AHA, its progression, and its diverse applications in solving complex optimization problems.","PeriodicalId":48633,"journal":{"name":"Computer Science Review","volume":"87 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science Review","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.cosrev.2025.100727","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The Artificial Hummingbird Algorithm (AHA) is a metaheuristic optimization technique inspired by the behaviours and foraging strategies of hummingbirds. Known for their extraordinary agility and accuracy in collecting nectar, hummingbirds provide an exemplary framework for tackling complex optimization problems. Developed by Zhao et al. in 2022, AHA has swiftly attracted interest within the research community because to its exceptional performance and adaptability. This study provides a detailed and comprehensive review of AHA, exploring the diverse versions and modifications published in multiple research papers since its inception in 2022, with 23 % appearing in international conference papers and 75 % in esteemed peer-reviewed journals. The variants of AHA covered in this paper include 55 % of classical AHA, 17 % of improved AHA, 11 % of hybridization, 2 % of binary, 15 % of multi-objective variants, respectively. Furthermore, the applications of AHA illustrate its effectiveness and adaptability across various fields, with 42 % in power and control engineering, 11 % in optimizing deep learning models, 10 % in engineering design challenges, and 8 % in renewable energy sources. The algorithm has been utilized substantially in the domain of IoT, wireless sensor networks, wind energy, and fog computing. Furthermore, we also evaluate the performance of the AHA in the image clustering domain, and the findings revealed that the AHA performs better in comparison to the other tested methods. The main objectives of this study are to deliver a comprehensive review of AHA, emphasizing its novel methodology, and analyzing its various variants and their applications in numerous fields. As nature-inspired optimization methods continue to evolve, this survey paper expected to serves as a valuable resource for researchers aiming to gain a comprehensive understanding of AHA, its progression, and its diverse applications in solving complex optimization problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Science Review
Computer Science Review Computer Science-General Computer Science
CiteScore
32.70
自引率
0.00%
发文量
26
审稿时长
51 days
期刊介绍: Computer Science Review, a publication dedicated to research surveys and expository overviews of open problems in computer science, targets a broad audience within the field seeking comprehensive insights into the latest developments. The journal welcomes articles from various fields as long as their content impacts the advancement of computer science. In particular, articles that review the application of well-known Computer Science methods to other areas are in scope only if these articles advance the fundamental understanding of those methods.
期刊最新文献
Machine learning in automated diagnosis of autism spectrum disorder: a comprehensive review WebAssembly and security: A review Advancing smart transportation: A review of computer vision and photogrammetry in learning-based dimensional road pavement defect detection Artificial hummingbird algorithm: Theory, variants, analysis, applications, and performance evaluation A systematic review on cover selection methods for steganography: Trend analysis, novel classification and analysis of the elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1