{"title":"Multi-sensor data fusion and deep learning-based prediction of excavator bucket fill rates","authors":"Shijiang Li, Gongxi Zhou, Shaojie Wang, Xiaodong Jia, Liang Hou","doi":"10.1016/j.autcon.2025.106008","DOIUrl":null,"url":null,"abstract":"Accurately predicting the bucket fill rate of excavators is a challenging task due to factors such as material flowability and the complex coupling interactions between the material and the bucket. To address this challenge, this paper proposes a bucket fill rate prediction method based on multi-sensor data fusion and deep learning. The ITCBAM model was developed by integrating a Convolutional Block Attention Module (CBAM) into the InceptionTime framework, leveraging multi-source sensor data such as cylinder displacement and stereo vision to enable precise predictions of fill rates. Results show that the ITCBAM model achieves prediction errors of 9.48% and 10.65% on the familiar and unfamiliar test sets, respectively. Compared to physical models and other deep learning models, it demonstrates higher prediction accuracy and stronger generalization capability. This method facilitates excavation decision-making, enhances construction efficiency, and provides valuable insights for further research on the automation and real-time prediction of construction machinery.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"25 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2025.106008","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately predicting the bucket fill rate of excavators is a challenging task due to factors such as material flowability and the complex coupling interactions between the material and the bucket. To address this challenge, this paper proposes a bucket fill rate prediction method based on multi-sensor data fusion and deep learning. The ITCBAM model was developed by integrating a Convolutional Block Attention Module (CBAM) into the InceptionTime framework, leveraging multi-source sensor data such as cylinder displacement and stereo vision to enable precise predictions of fill rates. Results show that the ITCBAM model achieves prediction errors of 9.48% and 10.65% on the familiar and unfamiliar test sets, respectively. Compared to physical models and other deep learning models, it demonstrates higher prediction accuracy and stronger generalization capability. This method facilitates excavation decision-making, enhances construction efficiency, and provides valuable insights for further research on the automation and real-time prediction of construction machinery.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.