Hybrid powertrain with dual energy regeneration for boom cylinder movement in a hydraulic excavator

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Automation in Construction Pub Date : 2025-01-21 DOI:10.1016/j.autcon.2025.105974
Van Hien Nguyen, Tri Cuong Do, Kyoung Kwan Ahn
{"title":"Hybrid powertrain with dual energy regeneration for boom cylinder movement in a hydraulic excavator","authors":"Van Hien Nguyen, Tri Cuong Do, Kyoung Kwan Ahn","doi":"10.1016/j.autcon.2025.105974","DOIUrl":null,"url":null,"abstract":"This paper presents a powertrain integrated with an energy regeneration system designed to decrease energy consumption and emissions in hybrid hydraulic excavators. The feature of this powertrain is its integration of a hydrostatic transmission (HST), which optimizes torque and speed between the pump and power sources. Additionally, the energy regeneration system includes two distinct methods: employing an independent hydraulic motor or utilizing the hydraulic motor mode of the main hydraulic pump/motor to recapture potential energy from the boom cylinder. Furthermore, an energy management approach, leveraging an equivalent consumption minimization strategy, is proposed to distribute power requirements, aiming to maximize engine efficiency. Compared to existing hybrid and conventional systems, both experimental and simulation results show that the proposed system can achieve energy savings of up to 61.64%. Additionally, the energy regeneration efficiency of the proposed system can reach up to 73% during the cylinder lowering process.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"34 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2025.105974","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a powertrain integrated with an energy regeneration system designed to decrease energy consumption and emissions in hybrid hydraulic excavators. The feature of this powertrain is its integration of a hydrostatic transmission (HST), which optimizes torque and speed between the pump and power sources. Additionally, the energy regeneration system includes two distinct methods: employing an independent hydraulic motor or utilizing the hydraulic motor mode of the main hydraulic pump/motor to recapture potential energy from the boom cylinder. Furthermore, an energy management approach, leveraging an equivalent consumption minimization strategy, is proposed to distribute power requirements, aiming to maximize engine efficiency. Compared to existing hybrid and conventional systems, both experimental and simulation results show that the proposed system can achieve energy savings of up to 61.64%. Additionally, the energy regeneration efficiency of the proposed system can reach up to 73% during the cylinder lowering process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
期刊最新文献
Tile detection using mask R-CNN in non-structural environment for robotic tiling Application of digitalization and computerization technology in road construction Active learning-driven semantic segmentation for railway point clouds with limited labels Bridge point cloud semantic segmentation based on view consensus and cross-view self-prompt fusion Image-based prediction for enclosure structure deformation in pipe-roof tunnel construction using a physical-guided and generative deep learning method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1