{"title":"Glutamate transporter activator LDN-212320 prevents chronic pain-induced cognitive impairment and anxiety-like behaviors in a mouse model","authors":"Ghallab Alotaibi, Amna Khan, Shafiqur Rahman","doi":"10.1016/j.bbr.2025.115440","DOIUrl":null,"url":null,"abstract":"<div><div>The astroglial glutamate transporter in the hippocampus and anterior cingulate cortex (ACC) is critically involved in chronic pain-induced cognitive and psychiatric abnormalities. We have previously reported that LDN-212320, a glutamate transporter-1 (GLT-1) activator, attenuates complete Freund’s adjuvant (CFA)-induced acute and chronic nociceptive pain. However, the cellular and molecular mechanisms underlying GLT-1 modulation in the hippocampus and ACC during chronic pain-induced cognitive deficit-like and anxiety-like behaviors remain unknown. Here, we have investigated the effects of LDN-212320 on CFA-induced chronic pain associated with cognitive deficit-like and anxiety-like behaviors in mice. We have evaluated the effects of LDN-212320 on CFA-induced impaired spatial, working, and recognition memory using Y-maze and object-place recognition tests. In addition, we have determined the effects of LDN-21230 on chronic pain-induced anxiety-like behaviors using elevated plus maze and marble burying test. We have also examined the effects of LDN-212320 on cAMP response element-binding protein (pCREB), brain-derived neurotrophic factor (BDNF), protein kinase A (PKA), and Ca<sup>2 +</sup>/calmodulin-dependent protein kinase II (CaMKII) expression in the hippocampus and ACC during CFA-induced cognitive deficit-like and anxiety-like behaviors using the Western blot analysis and immunofluorescence assay. Pretreatment with LDN-212320 (20 mg/kg) significantly attenuated CFA-induced impaired spatial, working, and recognition memory. Furthermore, LDN-212320 (20 mg/kg) significantly reduced CFA-induced anxiety-like behaviors. Additionally, LDN-212320 (20 mg/kg) significantly reversed CFA-induced decreased pCREB, BDNF, PKA and CaMKII expression in the hippocampus and ACC. Overall, these results suggest that the LDN-212320 prevents CFA-induced cognitive deficit-like and anxiety-like behaviors by activating CaMKII/CREB/BDNF signaling pathway in the hippocampus and ACC. Therefore, LDN-212320 could be a potential treatment for chronic pain associated with cognitive impairment and anxiety-like behaviors.</div></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":"482 ","pages":"Article 115440"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432825000269","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The astroglial glutamate transporter in the hippocampus and anterior cingulate cortex (ACC) is critically involved in chronic pain-induced cognitive and psychiatric abnormalities. We have previously reported that LDN-212320, a glutamate transporter-1 (GLT-1) activator, attenuates complete Freund’s adjuvant (CFA)-induced acute and chronic nociceptive pain. However, the cellular and molecular mechanisms underlying GLT-1 modulation in the hippocampus and ACC during chronic pain-induced cognitive deficit-like and anxiety-like behaviors remain unknown. Here, we have investigated the effects of LDN-212320 on CFA-induced chronic pain associated with cognitive deficit-like and anxiety-like behaviors in mice. We have evaluated the effects of LDN-212320 on CFA-induced impaired spatial, working, and recognition memory using Y-maze and object-place recognition tests. In addition, we have determined the effects of LDN-21230 on chronic pain-induced anxiety-like behaviors using elevated plus maze and marble burying test. We have also examined the effects of LDN-212320 on cAMP response element-binding protein (pCREB), brain-derived neurotrophic factor (BDNF), protein kinase A (PKA), and Ca2 +/calmodulin-dependent protein kinase II (CaMKII) expression in the hippocampus and ACC during CFA-induced cognitive deficit-like and anxiety-like behaviors using the Western blot analysis and immunofluorescence assay. Pretreatment with LDN-212320 (20 mg/kg) significantly attenuated CFA-induced impaired spatial, working, and recognition memory. Furthermore, LDN-212320 (20 mg/kg) significantly reduced CFA-induced anxiety-like behaviors. Additionally, LDN-212320 (20 mg/kg) significantly reversed CFA-induced decreased pCREB, BDNF, PKA and CaMKII expression in the hippocampus and ACC. Overall, these results suggest that the LDN-212320 prevents CFA-induced cognitive deficit-like and anxiety-like behaviors by activating CaMKII/CREB/BDNF signaling pathway in the hippocampus and ACC. Therefore, LDN-212320 could be a potential treatment for chronic pain associated with cognitive impairment and anxiety-like behaviors.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.