Astaxanthin-loaded polylactic acid-glycolic acid nanoparticles alleviates atherosclerosis by suppressing macrophage ferroptosis via the NRF2/SLC7A11/GPX4 pathway

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Archives of biochemistry and biophysics Pub Date : 2025-01-21 DOI:10.1016/j.abb.2025.110316
Mengying Jin , Xiao Chen , Lanzhuoying Zheng , Yuanyuan Peng , Mingying Lin , Ke Liang , Xinran Liu , Zihan Xu , Yiming Yang , Baozhu Wei , Jing Wan
{"title":"Astaxanthin-loaded polylactic acid-glycolic acid nanoparticles alleviates atherosclerosis by suppressing macrophage ferroptosis via the NRF2/SLC7A11/GPX4 pathway","authors":"Mengying Jin ,&nbsp;Xiao Chen ,&nbsp;Lanzhuoying Zheng ,&nbsp;Yuanyuan Peng ,&nbsp;Mingying Lin ,&nbsp;Ke Liang ,&nbsp;Xinran Liu ,&nbsp;Zihan Xu ,&nbsp;Yiming Yang ,&nbsp;Baozhu Wei ,&nbsp;Jing Wan","doi":"10.1016/j.abb.2025.110316","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Astaxanthin (ASX), a fat-soluble carotenoid mainly sourced from Haematococcus pluvialis, shows promise for clinical applications in chronic inflammatory diseases. This study investigates whether ASX can mitigate atherosclerosis (AS) by modulating macrophage ferroptosis and provides astaxanthin-loaded polylactic acid-glycolic acid nanoparticles (ASX-PLGA NPs) as comparison.</div></div><div><h3>Method</h3><div>ApoE−/− mice were fed a high-fat diet with ASX or statin intervention. Plaque area, lipid aggregation, collagen content, and ferroptosis-related indicators were assessed. Moreover, ASX-PLGA NPs were synthesized and characterized and were used to pretreat macrophages induced with oxidized low-density lipoprotein (ox-LDL). Indicators linked to ferroptosis and oxidative stress were detected. Finally, the expression of nuclear factor erythroid -related factor 2 (NRF2) was evaluated.</div></div><div><h3>Results</h3><div>ASX intervention significantly delayed the progression of AS plaques, characterized by reductions in plaque area and increased collagen fibers. The observed improvements in AS were consistent with statins. ASX-PLGA NPs demonstrate good safety and stability and have better therapeutic effects than ASX alone. Indicators linked to ferroptosis and oxidative stress were significantly improved in groups containing ASX in vivo and vitro. Additionally, ASX facilitated the nuclear translocation of NRF2, which could be attenuated with ML385, a specific inhibitor of NRF<strong>2.</strong></div></div><div><h3>Conclusion</h3><div>ASX-PLGA NPs have better therapeutic effects than ASX alone. The regulation of NRF2/SLC7A11/GPX4 represents a novel mechanism by which ASX can counteract ferroptosis and impede AS progression.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"765 ","pages":"Article 110316"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003986125000293","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Astaxanthin (ASX), a fat-soluble carotenoid mainly sourced from Haematococcus pluvialis, shows promise for clinical applications in chronic inflammatory diseases. This study investigates whether ASX can mitigate atherosclerosis (AS) by modulating macrophage ferroptosis and provides astaxanthin-loaded polylactic acid-glycolic acid nanoparticles (ASX-PLGA NPs) as comparison.

Method

ApoE−/− mice were fed a high-fat diet with ASX or statin intervention. Plaque area, lipid aggregation, collagen content, and ferroptosis-related indicators were assessed. Moreover, ASX-PLGA NPs were synthesized and characterized and were used to pretreat macrophages induced with oxidized low-density lipoprotein (ox-LDL). Indicators linked to ferroptosis and oxidative stress were detected. Finally, the expression of nuclear factor erythroid -related factor 2 (NRF2) was evaluated.

Results

ASX intervention significantly delayed the progression of AS plaques, characterized by reductions in plaque area and increased collagen fibers. The observed improvements in AS were consistent with statins. ASX-PLGA NPs demonstrate good safety and stability and have better therapeutic effects than ASX alone. Indicators linked to ferroptosis and oxidative stress were significantly improved in groups containing ASX in vivo and vitro. Additionally, ASX facilitated the nuclear translocation of NRF2, which could be attenuated with ML385, a specific inhibitor of NRF2.

Conclusion

ASX-PLGA NPs have better therapeutic effects than ASX alone. The regulation of NRF2/SLC7A11/GPX4 represents a novel mechanism by which ASX can counteract ferroptosis and impede AS progression.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
PLGA
来源期刊
Archives of biochemistry and biophysics
Archives of biochemistry and biophysics 生物-生化与分子生物学
CiteScore
7.40
自引率
0.00%
发文量
245
审稿时长
26 days
期刊介绍: Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics. Research Areas Include: • Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing • Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions • Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.
期刊最新文献
UCP2 attenuates neural apoptosis and inflammation in spinal cord injury by inducing the acetylation of ANXA1 and activating the PI3K/AKT pathway. HSPB1 suppresses oxLDL-induced vascular smooth muscle cell ferroptosis by inhibiting DPP4 miR-200 family: Gatekeepers of fibrinolytic regulation in lung pathologies during acute lung injury Biophysical Investigation of Metal-Substituted D-2-Hydroxyglutarate Dehydrogenase. Uncoupling protein 1 deficiency leads to transcriptomic differences in livers of pregnancy female mice and aggravates hepatic steatosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1