Tatiana A Semashko, Gleb Y Fisunov, Georgiy Y Shevelev, Vadim M Govorun
{"title":"BAC-browser: the tool for synthetic biology.","authors":"Tatiana A Semashko, Gleb Y Fisunov, Georgiy Y Shevelev, Vadim M Govorun","doi":"10.1186/s12859-025-06049-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Currently, synthetic genomics is a rapidly developing field. Its main tasks, such as the design of synthetic sequences and the assembly of DNA sequences from synthetic oligonucleotides, require specialized software. In this article, we present a program with a graphical interface that allows non-bioinformatics to perform the tasks needed in synthetic genomics.</p><p><strong>Results: </strong>We developed BAC-browser v.2.1. It helps to design nucleotide sequences and features the following tools: generate nucleotide sequence from amino acid sequences using a codon frequency table for a specific organism, as well as visualization of restriction sites, GC composition, GC skew and secondary structure. To assemble DNA sequences, a fragmentation tool was created: regular breakdown into oligonucleotides of a certain length and breakdown into oligonucleotides with thermodynamic alignment. We demonstrate the possibility of DNA fragments assemblies designed in different modes of BAC-browser.</p><p><strong>Conclusions: </strong>The BAC-browser has a large number of tools for working in the field of systemic genomics and is freely available at the link with a direct link https://sysbiomed.ru/upload/BAC-browser-2.1.zip .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"27"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758742/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06049-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Currently, synthetic genomics is a rapidly developing field. Its main tasks, such as the design of synthetic sequences and the assembly of DNA sequences from synthetic oligonucleotides, require specialized software. In this article, we present a program with a graphical interface that allows non-bioinformatics to perform the tasks needed in synthetic genomics.
Results: We developed BAC-browser v.2.1. It helps to design nucleotide sequences and features the following tools: generate nucleotide sequence from amino acid sequences using a codon frequency table for a specific organism, as well as visualization of restriction sites, GC composition, GC skew and secondary structure. To assemble DNA sequences, a fragmentation tool was created: regular breakdown into oligonucleotides of a certain length and breakdown into oligonucleotides with thermodynamic alignment. We demonstrate the possibility of DNA fragments assemblies designed in different modes of BAC-browser.
Conclusions: The BAC-browser has a large number of tools for working in the field of systemic genomics and is freely available at the link with a direct link https://sysbiomed.ru/upload/BAC-browser-2.1.zip .
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.