Optimizing extrusion-based 3D bioprinting of plant cells with enhanced resolution and cell viability.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biofabrication Pub Date : 2025-01-23 DOI:10.1088/1758-5090/adada1
Dezhi Zhou, Peixi Li, Shuang Yu, Zhenhua Cui, Tao Xu, Liliang Ouyang
{"title":"Optimizing extrusion-based 3D bioprinting of plant cells with enhanced resolution and cell viability.","authors":"Dezhi Zhou, Peixi Li, Shuang Yu, Zhenhua Cui, Tao Xu, Liliang Ouyang","doi":"10.1088/1758-5090/adada1","DOIUrl":null,"url":null,"abstract":"<p><p>3D bioprinting of plant cells has emerged as a promising technology for plant cell immobilization and related applications. Despite the numerous progress in mammal cell printing, the bioprinting of plant cells is still in its infancy and needs further investigation. Here, we present a systematic study on optimizing the 3D bioprinting of plant cells, using carrots as an example, towards enhanced resolution and cell viability. We mainly investigated the effects of cell cluster forms and nozzle size on the rheological, extrusion, and printability properties of plant cell bioinks, as well as on the resultant cell viability and growth. We found that when the printing nozzle is larger than 85% of the cell clusters embedded in the bioink, smooth extrusion, and good printability can be achieved together with considerable cell viability and long-term growth. Specifically, we optimized a bioink composited with suspension-cultured carrot cells, which exhibited better transparency, smoother extrusion, and higher cell viability over a one-month culture compared to those with the regular callus or fragmented callus. This work provides a practical guideline for optimizing plant cell bioprinting from the bioink development to the printing outcome assessment. It highlights the importance of selecting a matched nozzle and cell cluster and might provide insights for a better understating and exploitation of plant cell bioprinting.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/adada1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

3D bioprinting of plant cells has emerged as a promising technology for plant cell immobilization and related applications. Despite the numerous progress in mammal cell printing, the bioprinting of plant cells is still in its infancy and needs further investigation. Here, we present a systematic study on optimizing the 3D bioprinting of plant cells, using carrots as an example, towards enhanced resolution and cell viability. We mainly investigated the effects of cell cluster forms and nozzle size on the rheological, extrusion, and printability properties of plant cell bioinks, as well as on the resultant cell viability and growth. We found that when the printing nozzle is larger than 85% of the cell clusters embedded in the bioink, smooth extrusion, and good printability can be achieved together with considerable cell viability and long-term growth. Specifically, we optimized a bioink composited with suspension-cultured carrot cells, which exhibited better transparency, smoother extrusion, and higher cell viability over a one-month culture compared to those with the regular callus or fragmented callus. This work provides a practical guideline for optimizing plant cell bioprinting from the bioink development to the printing outcome assessment. It highlights the importance of selecting a matched nozzle and cell cluster and might provide insights for a better understating and exploitation of plant cell bioprinting.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
期刊最新文献
Pneumatic conveying inkjet bioprinting for the processing of living cells. Volumetric bioprinting of the osteoid niche. Optimizing extrusion-based 3D bioprinting of plant cells with enhanced resolution and cell viability. Electrospun robust, biodegradable, bioactive, and nanostructured sutures to accelerate the chronic wound healing. In vivo vessel connection of pre-vascularised 3D-bioprinted gingival connective tissue substitutes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1