Wen-Xun Lu, Wen-Qin Tu, Duo Chen, Zi-Zhao Wang, Yan-Ping Guo
{"title":"Niche shift and localized competitive dynamics influence the persistence and distribution of polyploids in the genus Achillea (Asteraceae).","authors":"Wen-Xun Lu, Wen-Qin Tu, Duo Chen, Zi-Zhao Wang, Yan-Ping Guo","doi":"10.1093/aob/mcaf011","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Competition with sympatric diploid progenitor(s) hinders the persistence of polyploids. The hypothesis that polyploids escape from competition through niche shifts has been widely tested; however, niche escape is unlikely to completely avoid competition. Given species growing in less favorable environments likely have weaker competitive abilities, we hypothesize that polyploid populations tend to persist in areas where their progenitors with relatively low habitat suitability.</p><p><strong>Methods: </strong>This study investigated two sibling allopolyploid species, Achillea alpina and A. wilsoniana of the daisy family, which originated independently from the same two parental species. We explored the patterns of niche shifts between the polyploids and their progenitors by using several ecoinformatics analyses in the environmental and geographic spaces, and performed ecological niche modeling to estimate the historical distribution of these species as well as the potential regions for persistence of allopolyploids.</p><p><strong>Key results: </strong>The niche shift patterns of the two polyploids were not completely consistent: A. alpina showed niche expansion, while A. wilsoniana exhibited a trend towards niche novelty. Their potential suitable areas were both more likely to overlap with regions where the habitat suitability values of their parental species became low.</p><p><strong>Conclusions: </strong>The present results support our hypothesis that polyploids tend to persist their populations in areas that are less suitable for their diploid progenitors. Meanwhile, niche shifts may promote the success of polyploids. These findings contribute to our understanding of the ecological processes involved in the maintenance and persistence of polyploids.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcaf011","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims: Competition with sympatric diploid progenitor(s) hinders the persistence of polyploids. The hypothesis that polyploids escape from competition through niche shifts has been widely tested; however, niche escape is unlikely to completely avoid competition. Given species growing in less favorable environments likely have weaker competitive abilities, we hypothesize that polyploid populations tend to persist in areas where their progenitors with relatively low habitat suitability.
Methods: This study investigated two sibling allopolyploid species, Achillea alpina and A. wilsoniana of the daisy family, which originated independently from the same two parental species. We explored the patterns of niche shifts between the polyploids and their progenitors by using several ecoinformatics analyses in the environmental and geographic spaces, and performed ecological niche modeling to estimate the historical distribution of these species as well as the potential regions for persistence of allopolyploids.
Key results: The niche shift patterns of the two polyploids were not completely consistent: A. alpina showed niche expansion, while A. wilsoniana exhibited a trend towards niche novelty. Their potential suitable areas were both more likely to overlap with regions where the habitat suitability values of their parental species became low.
Conclusions: The present results support our hypothesis that polyploids tend to persist their populations in areas that are less suitable for their diploid progenitors. Meanwhile, niche shifts may promote the success of polyploids. These findings contribute to our understanding of the ecological processes involved in the maintenance and persistence of polyploids.
期刊介绍:
Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide.
The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.