{"title":"Numerical Simulation of Fluid Shear Stress Distribution in Microcracks of Trabecular Bone.","authors":"Yan Gao, Sen Zhao, Ailing Yang","doi":"10.1155/abb/5634808","DOIUrl":null,"url":null,"abstract":"<p><p>Bone is one of the hardest tissues in the human body, but it can undergo microcracks under long-term and periodic mechanical loads. The Newton iterative method was used to calculate the steady state, and the effects of different inlet and outlet pressures, trabecular gap width and height, and microcrack's depth and width on the fluid shear stress (FSS) were studied, and the gradient of FSS inside the microcrack was analyzed. The results show that the pressure difference and trabecular gap heigh are positively correlated with the FSS (the linear correlation coefficients <i>R</i> <sup>2</sup> were 0.9768 and 0.96542, respectively). When the trabecular gap width was 100 μm, the peak of FSS decreased by 28.57% compared with 800 and 400 μm, and the gradient of FSS inside the microcrack was 0.1-0.4 Pa/mm. This study can help people more intuitively understand the internal fluid distribution of trabecular bone and provide a reliable theoretical basis for the subsequent construction of gradient FSS devices in vitro.</p>","PeriodicalId":8029,"journal":{"name":"Applied Bionics and Biomechanics","volume":"2025 ","pages":"5634808"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753853/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Bionics and Biomechanics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/abb/5634808","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bone is one of the hardest tissues in the human body, but it can undergo microcracks under long-term and periodic mechanical loads. The Newton iterative method was used to calculate the steady state, and the effects of different inlet and outlet pressures, trabecular gap width and height, and microcrack's depth and width on the fluid shear stress (FSS) were studied, and the gradient of FSS inside the microcrack was analyzed. The results show that the pressure difference and trabecular gap heigh are positively correlated with the FSS (the linear correlation coefficients R2 were 0.9768 and 0.96542, respectively). When the trabecular gap width was 100 μm, the peak of FSS decreased by 28.57% compared with 800 and 400 μm, and the gradient of FSS inside the microcrack was 0.1-0.4 Pa/mm. This study can help people more intuitively understand the internal fluid distribution of trabecular bone and provide a reliable theoretical basis for the subsequent construction of gradient FSS devices in vitro.
期刊介绍:
Applied Bionics and Biomechanics publishes papers that seek to understand the mechanics of biological systems, or that use the functions of living organisms as inspiration for the design new devices. Such systems may be used as artificial replacements, or aids, for their original biological purpose, or be used in a different setting altogether.